Individual differences in morphological processing and stress variability in English complex words

Tammy Ganster, Trier University (Germany)

ganster@uni-trier.de

13th Mediterranean Morphology Meeting (University of the Aegean, Rhodes, Greece)

Stress variability in English complex adjectives

Phenomenon: primary stress in verbal base is sometimes shifted in the derivative

and sometimes preserved within the same morphological category

verb	stress preserving derivative variant	stress shifting derivative variant
á nalyze	á nalyzable	analýzable
compáre	comp á rable	c ó mparable
c é lebrate	c é lebratory	celebrátory
artículate	artículatory	articul á tory

What factors can account for this variation?

Previous research on stress variability

Stratum-based approaches (Kiparsky 1982 et seq., 2005, 2015, Fudge 1984)	Structural approaches (Trevian 2003, 2007, Bauer, Lieber & Plag 2013, Newell 2020)	Paradigmatic approaches (Steriade 1999a, 1999b, Stanton & Steriade 2021)
 strict division into three categories stress shifting (stem level): - ory > óscillate > oscillátory, oscíllatory, *óscillatory stress preserving (word level): -ness > alért > alértness, *álertness variable (dual level): -able > jústify > jústifiable ~ justifíable 	 segmental phonological features of derivative assumed to influence stress position célebrate > célebr[ə]tory ~ celebr[éɪ]tory 	 effect of broader paradigmatic relationships? what should we take as the base of a complex word? démonstrate demónstrative > demónstrable ?

Problems structure-based accounts

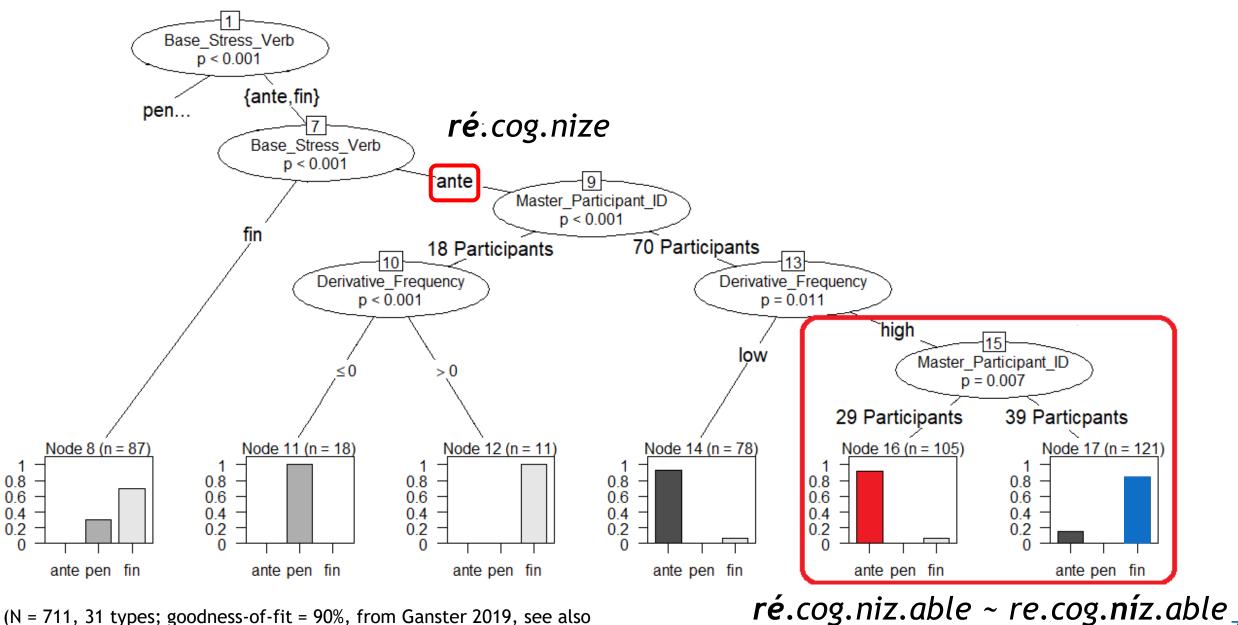
Stratum-based accounts

- empirical evidence against uniform behavior of stem and word level
- \rightarrow stress preservation as well as stress shift underpredicted (*oscillátory* ~ *óscillatory*)

Structural accounts

- effect said to be variable (ánalyze > ánal[aɪ]zable ~ anal[áɪ]zable)
- can indentify a possible reason for stress shift but cannot account for variability of stress shift

Paradigmatic approaches


- ► which related word from the paradigm should count as the one influencing the stress pattern of another given word of the paradigm? → does lexical frequency make the difference?
- all accounts abstract away from individual differences between speakers!

Processing-based accounts: a possible solution?

- ► Hay's dual-route model of lexical access (Hay 2001, 2003, Hay & Baayen 2003)
- relationship between base frequency and derivative frequency is crucial
- the more frequent the base, the more likely a speaker is to take the decomposition route
 - ▶ identifiable = idéntify + -able \rightarrow i**dén**tifiable
 - → stress **preservation**
- the more frequent the derivative, the more likely a speaker is to take the whole-word route
 - ▶ justifiable = justifiable (jústify + -able) → justifíable
 - → stress shift
- (see Collie 2007, 2008, Bermúdez-Otero 2012, Dabouis 2017 for pertinent studies)

Problems of processing-based accounts

- processing-based accounts also abstract away from individual differences
- exclusive reliance on corpus frequencies to account for processing effects (that are assumed to be individual though)
- individual differences marginalized, to date mainly only looked at in reading acquistion (e.g. McCutchen et al. 2009) and second language acquisition (e.g. Coxhead et al. 2015)

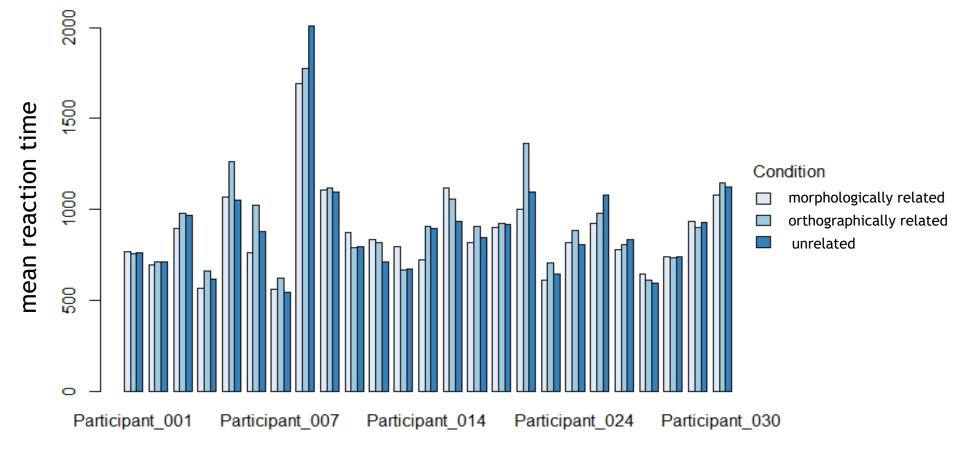
(N = 711, 31 types; goodness-of-fit = 90%, from Ganster 2019, see also Arndt-Lappe & Sanz 2017 for complementary effect with base frequency)

7

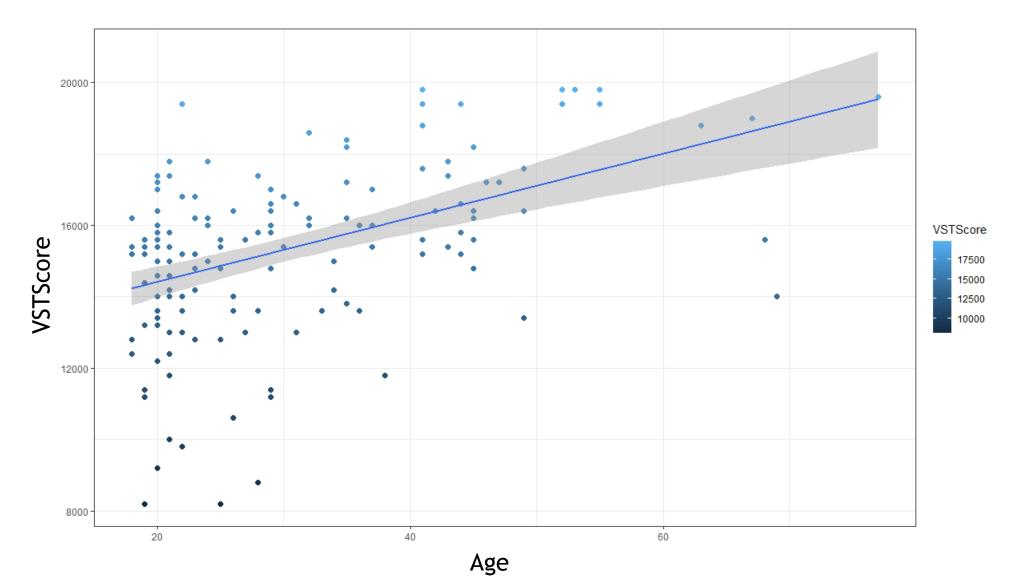
Towards more individual models of morphological processing

- more individual measures of morpholgical processing are needed
- correlates that emerged as important in other fields
 - individual awareness of morphological structure (e.g. McCutchen et al. 2009)
 - vocabulary size (e.g. Brysbaert et al. 2016, Mainz et al. 2017)
- These measures need to be tested for their effects on stress production in complex words

Experiment

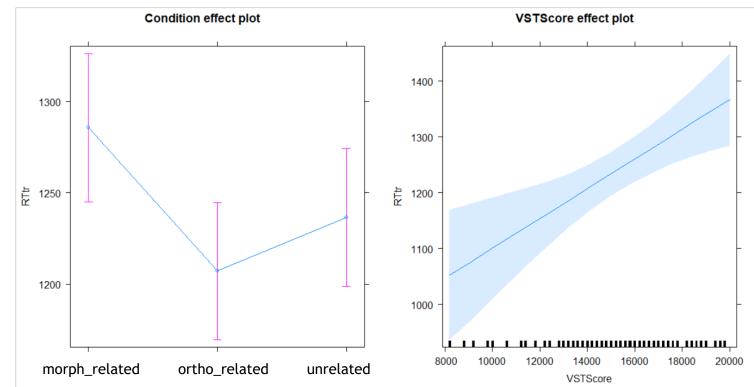

- **remote online** experiment
- 153 native speakers of British English
 - > age: 17-77 yrs, mean: 25, median: 29.98 / sexes: 93 females, 60 males
 - recruited via the online platform Prolific
- multi-task experiment
 - PROCESSING
 - morphological sensitivity task (masked priming with lexical decision)
 - vocabulary size test (standardized test, Coxhead et al. 2015, Nation & Beglar 2007)
 - SOCIO-DEMOGRAPHIC DATA
 - meta questionnaire (education, languages, geography, socio-economic status...)
 - STRESS
 - production task (read out test sentences with complex adjectives in them)
 - perception task (imitation task)

Data overview


morphological sensitivity task	vocabulary size test	production task
3,467 observations	15,300 observations	
masked priming experiment with lexical decision task	standardized and multiply validated forced choice test (Nation & Beglar 2007)	
measured reaction time to three different priming conditions:	100 questions	
	Example	
complex words primes - simplex words	and They SAM it	will be
targets	see: They SAW it. a) closed it tightly	explained
morphologically related prime-target	b) waited for it	later
pairs (subversion - subvert)	c) looked at it	
orthographically related prime-target		
pairs (chargeable - charisma)	score from 0 - 20,000 (estimates number	
	of known word families)	
unrelated prime-target pairs (inventive - remorse)		

Individuality in morphological sensitivity

raw mean reaction times by condition across sample of first 25 out of 129 participants, N = 3467


Variation in vocabulary size

12

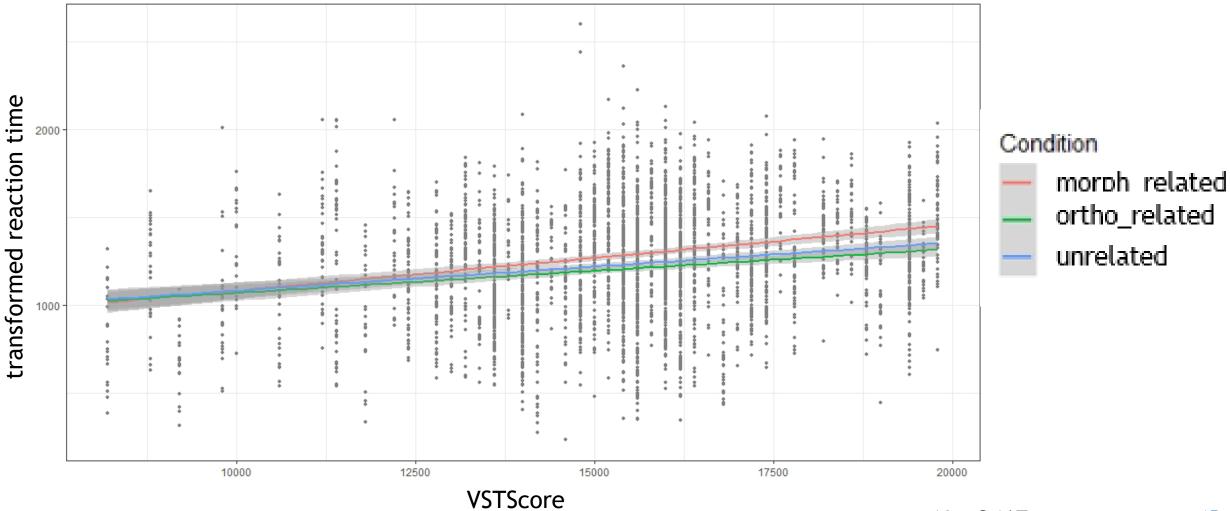
Individuality in morphological processing

- linear mixed effects model
- model formula = lmer(trRT ~ PrimingCondition + VSTScore + (1+ PrimingCondition | Participant), data = MSfinal)
- RTs standardized and normalized (using method of Baayen & Milin 2010)
- RT transformation applied here makes it so that greater number = faster RT

N = 3467

Individuality in morphological processing

- random slopes for effect of priming condition across participants
- generally: positive slopes for morphologically related condition, negative slopes for orthographically related
- effect of morphologically related condition varies more strongly than that of orthographically related condition
- ► effect of morphologically related condition is more individual → individual morphological processing


(Intercept) unrelated	ortho_related	morph_related
959.7475	-30.01292	56.623834
933.7001	-29.88158	56.243287
695.9116	-28.6826	39.306188
1101.7955	-30.72916	77.529265
575.0771	-28.07332	28.386424
768.9771	-29.05101	52.418902
1312.626	-31.79221	87.939234
195.9878	-26.16187	-3.664134
562.7826	-28.01133	25.566735
874.9415	-29.58531	45.894731
975.9947	-30.09484	51.038665
1022.3805	-30.32873	54.236331
831.5816	-29.36668	57.798891
604.4891	-28.22162	24.070865
	959.7475 933.7001 695.9116 1101.7955 575.0771 768.9771 1312.6265 195.9878 562.7826 874.9415 975.9947 1022.3805 831.5816	933.7001-29.88158695.9116-28.68261101.7955-30.72916575.0771-28.07332768.9771-29.051011312.6261-31.79221195.9878-26.16187562.7826-28.01133874.9415-29.58531975.9947-30.094841022.3805-30.32873831.5816-29.36668

coef(MS2.lmer1)\$Participant, coefficients sample: slopes of first 14 participants out of 129

N = 3467

model: lmer(trRT ~ PrimingCondition + VSTScore + (1+
PrimingCondition | Participant) , data = MSfinal)

Variation in the effect of vocabulary size

N = 3467

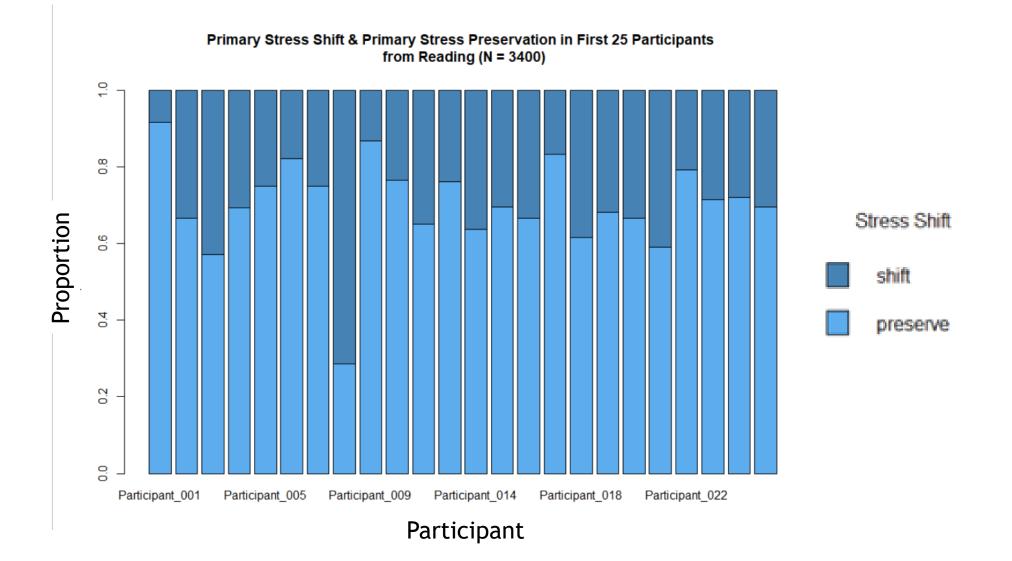
Relating individual differences in morphological processing to stress variation

Hypotheses

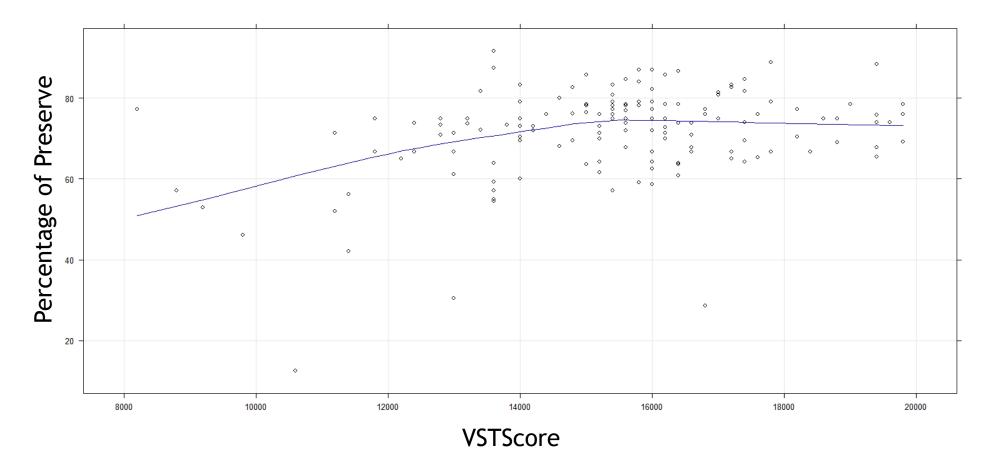
► Hypothesis 1: greater sensitivity to morphological structure → stronger paradigmatic effects → more stress preservation

► Hypothesis 2: greater vocabulary size → stronger paradigmatic effects → more stress preservation

Experiment: Stress production


production task

- **3,400** observations
- test sentences from Corpus of American Soap Operas (Davies 2011) with complex -able, -ant, -ative, -ive, -ory adjectives
- each participant read out 30 test sentences


Examples

- We're trying to do something a little more innovative.
- Well, actually, this move was anticipatory.
- Is there an address or a name or something else that's identifiable?
- each recording assessed by three trained raters (raters agree in 77% of cases, only agreement cases taken into account in analyses)

Individuality in stress variation

Vocabulary size and stress shift/preserve preference

Conclusion

- individual differences in both morphological processing and vocabulary size
- evidence for relationship between morphological processing and vocabulary size
 - vocabulary size facilitates morphological processing
- outlook: relating these results to how speakers stress morphologically complex words
 - first indication of effect of vocabulary size
 - \blacktriangleright morphologically processing \rightarrow more analyses needed

Thank you/ευχαριστώ for your attention!

Feel free to contact me: ganster@uni-trier.de

My special thanks to our wonderful student assistants Zarah Breitbarth, Jakob Engel, Aaron Seiler and Charlie Sloykowski!

References

Arndt-Lappe, S., & Sanz, J. (2017, June 21). Stress Variability in English -able and -ory Adjedctives: Markedness, Faithfulness, and Usage. 11th Mediterranean Morphology Meeting, Nicosia, Cyprus.

Baayen, H., & Milin, P. (2010). Analyzing Reaction Times. International Journal of Psychological Research, 3(2), 12-28.

Bauer, L., Lieber, R., & Plag, I. (2013). The Oxford Reference Guide to English Morphology. Oxford University Press.

Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). How Many Words Do We Know? Practical Estimates of Vocabulary Size Dependent on Word Definition, the Degree of Language Input and the Participant's Age. *Frontiers in Psychology*, 7.

Collie, S. (2008). English stress preservation: The case for "fake cyclicity." English Language and Linguistics, 12(3), 505-532.

Coxhead, A., Nation, P., & Sim, D. (2015). Measuring the Vocabulary Size of Native Speakers of English in New Zealand Secondary Schools. NZ J Educ Stud, 50, 121-135.

Davies, M. (2011). Corpus of American Soap Operas. https://www.english-corpora.org/scotus/

Fudge, E. (1984). English Word Stress. G. Allen & Unwin.

Hay, J. (2001). Lexical frequency in morphology: Is everything relative? *Linguistics*, 39(6), 1041-1070.

Hay, J. (2003). Causes and Consequences of Word Structure. Routledge.

Kiparsky, P. (2005). Paradigm Uniformity Constraints. https://web.stanford.edu/~kiparsky/Papers/LexConservatism.pdf

Kiparsky, P. (2015). Stratal OT: A synopsis and FAQs. In Y. E. Hsiao & L. H. Wee (Eds.), *Capturing Phonological Shades* (pp. 2-44). Cambridge Scholars Publishing.

References

Mainz, N., Shao, Z., Brysbaert, M., & Meyer, A. S. (2017). Vocabulary Knowledge Predicts Lexical Processing: Evidence from a Group of Participants with Diverse Educational Backgrounds. *Frontiers in Psychology*, 8(1164).

McCutchen, D., Logan, B., & Biangardi-Orpe, U. (2009). Making Meaning: Children's Sensitivity to Morphological Information During Word Reading. *Reading Research Quarterly*, 44(4), 360-376.

Nation, P., & Beglar, D. (2007). A vocabulary size test. The Language Teacher, 31(7).

Stanton, J., & Steriade, D. (2021). *Markedness drives base selection: Experimental evidence*. The 28th Manchester Phonology Meeting, Manchester, England.

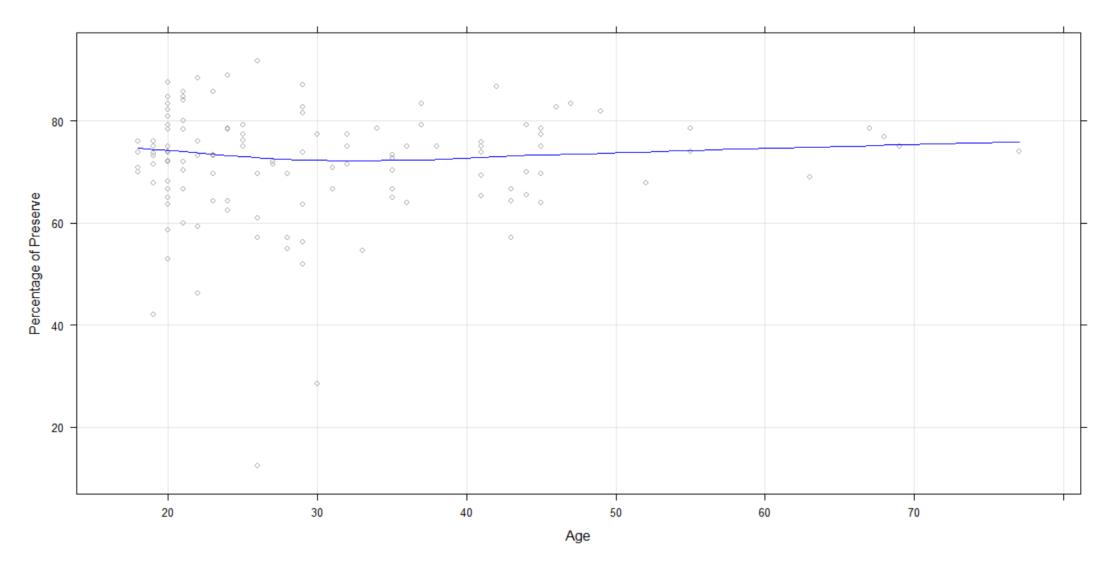
Steriade, D. (1999a). Lexical Conservatism. Linguistics in the Morning Calm - Selected Papers from SICOL 1997, 157-179.

Steriade, D. (1999b). Lexical Conservatism in French Adjectival Liaison. In B. Bullock, M. Authier, & L. Reed (Eds.), *Formal Perspectives in Romance Linguistics* (pp. 243-270). John Benjamins Publishing Company.

Trevian, I. (2003). Morphoaccentologie et processus d'affixation de l'anglais. Peter Lang.

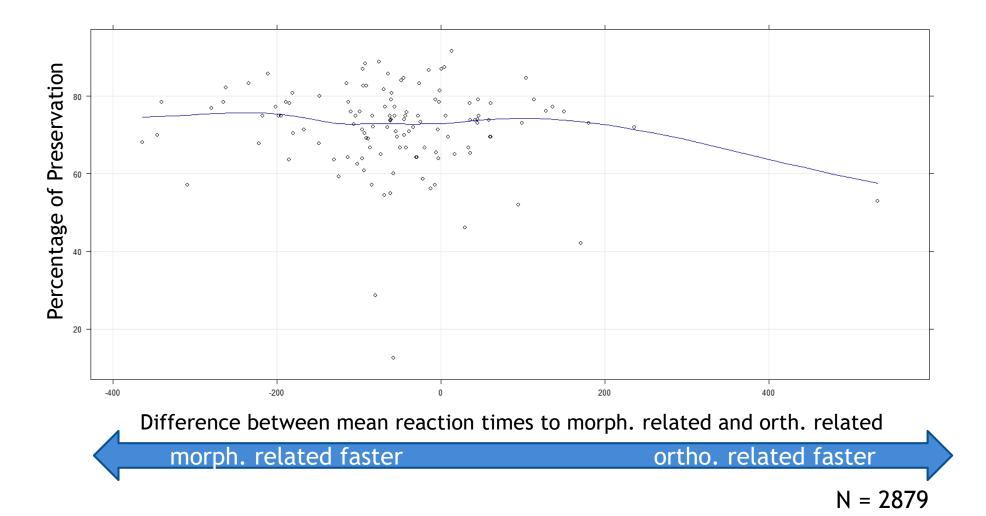
Trevian, I. (2007). Stress-neutral endings in contemporary British English: An updated overview. Language Sciences, 29, 426-450.

Appendix


results of condition-specific effect of VSTScore also borne out by lmer model

formula: MS.lmer0 = lmer(RTtrZ ~ VSTz + (1+VSTz | Condition), data = MSfinal)

Fixed effects:				
	Estimate S	Std. Error	df t value	Pr(> t)
(Intercept)	-0.0007769	0.0713691	2.0039344 -0.011	0.9923
VSTz	0.2129719	0.0307776	2.1878644 6.920	0.0159 *
Signif. code	es: 0 '***'	0.001 '**'	0.01 '*' 0.05 '.'	0.1''1


\$Cond	dition	
	(Intercept)	VSTz
myoy	0.12858847	0.2613765
mnoy	-0.10057338	0.1756310
mnon	-0.03034574	0.2019081
attr(,"class")		

[1] "coef.mer"

xylowess.fnc(PreservePercent ~ Age, data = RTan, ylab = "Percentage of Preserve"), N = 2879

Morphological sensitivity and stress shift/preserve preference

