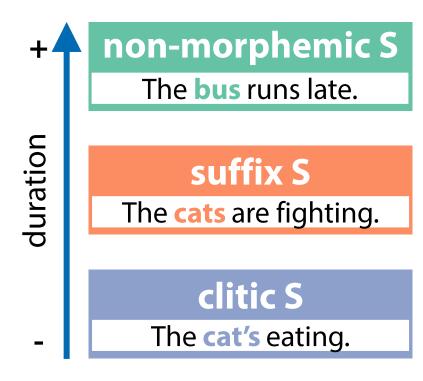
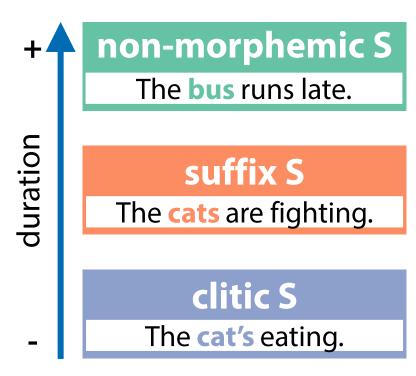


Durational differences of homophonous suffixes emerge from the lexicon:


Evidence from nonce words

Dominic Schmitz, Ingo Plag, Dinah Baer-Henney

Starting point


- ▶ Zimmermann (2016)
- ▶ Plag et al. (2017)
- Tomaschek et al. (2019)
- Schmitz et al. (2020) on nonce words

Starting point

- ▶ Zimmermann (2016)
- ▶ Plag et al. (2017)
- Tomaschek et al. (2019)
- Schmitz et al. (2020) on nonce words

How do such differences come to existence?

Linear Discriminative Learning – LDL

▶ LDL (Baayen et al., 2018; 2019) describes a mathematical and computational model of the mental lexicon

- ▶ LDL (Baayen et al., 2018; 2019) describes a mathematical and computational model of the mental lexicon
- ▶ form and meaning can be mapped onto each other using linear networks

- ▶ LDL (Baayen et al., 2018; 2019) describes a mathematical and computational model of the mental lexicon
- form and meaning can be mapped onto each other using linear networks
- ▶ LDL takes lexomes as the basic units for lexical processing

- ▶ LDL (Baayen et al., 2018; 2019) describes a mathematical and computational model of the mental lexicon
- form and meaning can be mapped onto each other using linear networks
- ▶ LDL takes lexomes as the basic units for lexical processing
- each lexome is connected to a semantic vector containing the association strengths of its lexome with each of the other lexomes

Linear Discriminative Learning – LDL

- ▶ LDL (Baayen et al., 2018; 2019) describes a mathematical and computational model of the mental lexicon
- form and meaning can be mapped onto each other using linear networks
- ▶ LDL takes lexomes as the basic units for lexical processing
- each lexome is connected to a semantic vector containing the association strengths of its lexome with each of the other lexomes
- ▶ lexomes and their association strengths can then be used to obtain a number of LDL measures

How do we obtain LDL measures?

How do we obtain LDL measures?

1. From data to matrices

word forms, bases, affixes, and transcriptions

word forms, bases, affixes, and transcriptions

real words (MALD, Tucker et al., 2018)

Word	Base	Affix	Transcription	
meal	meal	NA	mil	
meat	meat	NA	mit	
students	student	PL	stjudHts	
teacher	teacher	NA	tiJ@R	

word forms, bases, affixes, and transcriptions

real words (MALD, Tucker et al., 2018)

Word	Base	Affix	Transcription	
meal	meal	NA	mil	
meat	meat	NA	mit	
students	student	PL	stjudHts	
teacher	teacher	NA	tiJ@R	

pseudowords (Schmitz et al., 2020)

Word	Base	Affix	Transcription	
bloups	bloups	NA	bl6ps	
bloups	bloup	PL	bl6ps	
pleeps	pleeps	NA	plips	
pleeps	pleep	PL	plips	

- [C]ue matrix
 - contains the triphones of all word forms

	#mi	mil	il#	mit	it#
/mil/	1	1	1	0	0
/mit/	1	0	0	1	1
/stjudHt/	0	0	0	0	0
/tiJ@R/	0	0	0	0	0

▶ [S] emantic matrix

there is a number of options when it comes to semantics, i.e. whether to use real (Chuang et al., 2020) or simulated (Baayen et al., 2018) semantics for parts of or all data

today:

- Simulated semantic vectors for real words and/or pseudowords
 - → real and/or pseudowords contain some sort of semantics

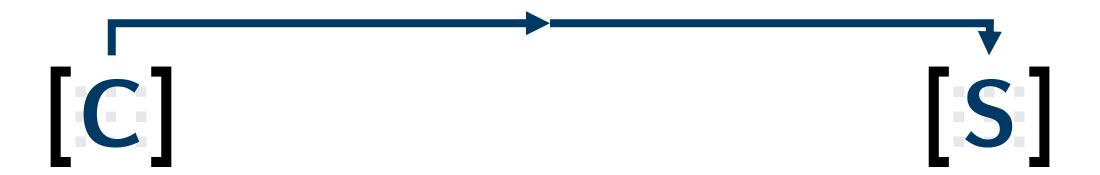
- ▶ [S] emantic matrix
 - contains semantic vectors for all word forms

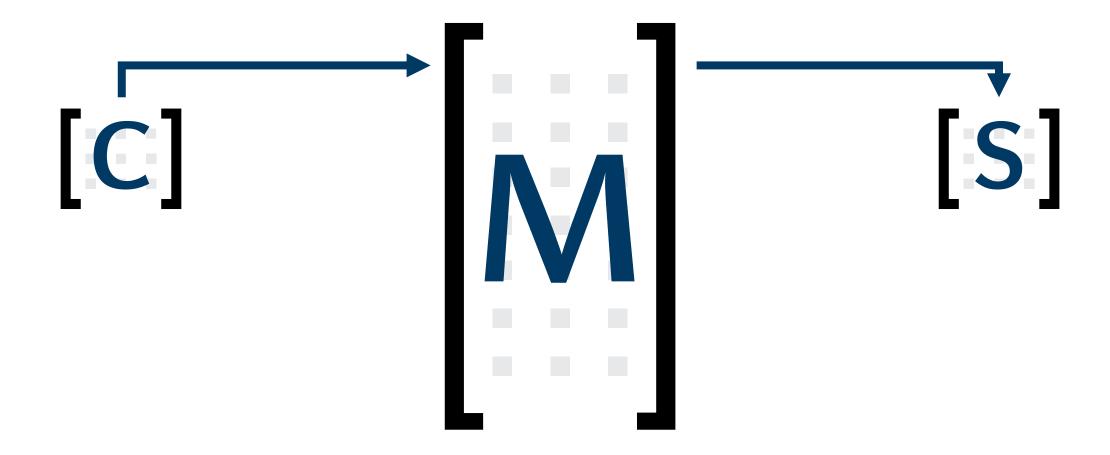
	classroom	college	cook	eat	vegetable	PL
/mil/	0.003	0.0005	0.9	0.8	0.7	0.2
/mit/	0.0006	0.0002	0.8	0.9	0.5	0.04
/stjudHt/	0.9	0.8	0.05	0.1	0.005	0.7
/tiJ@R/	0.8	0.8	0.09	0.003	0.02	0.5

- ▶ [S] emantic matrix
 - contains semantic vectors for all word forms

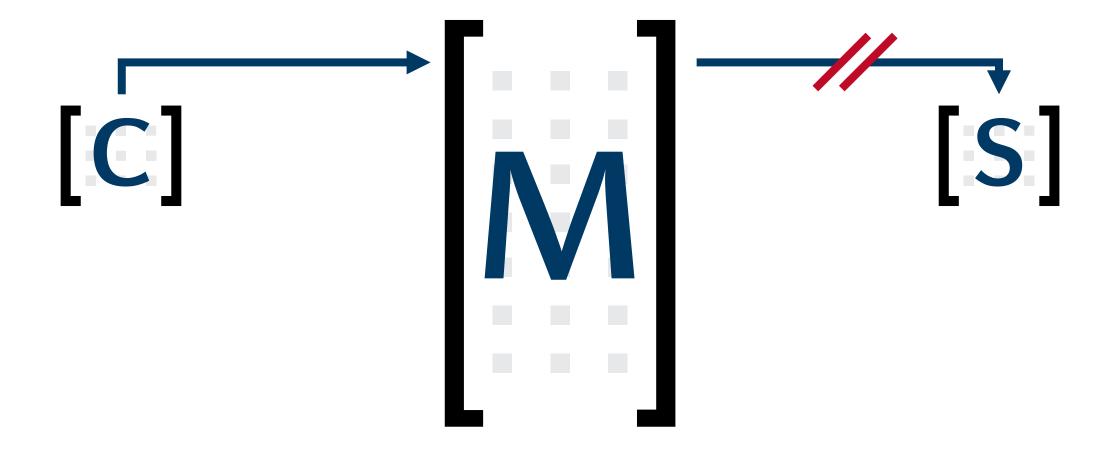
	classroom	college	cook	eat	vegetable	PL
/mil/	0.003	0.0005	0.9	0.8	0.7	0.2
/mit/	0.0006	0.0002	0.8	0.9	0.5	0.04
/stjudHt/	0.9	0.8	0.05	0.1	0.005	0.7
/tiJ@R/	0.8	0.8	0.09	0.003	0.02	0.5

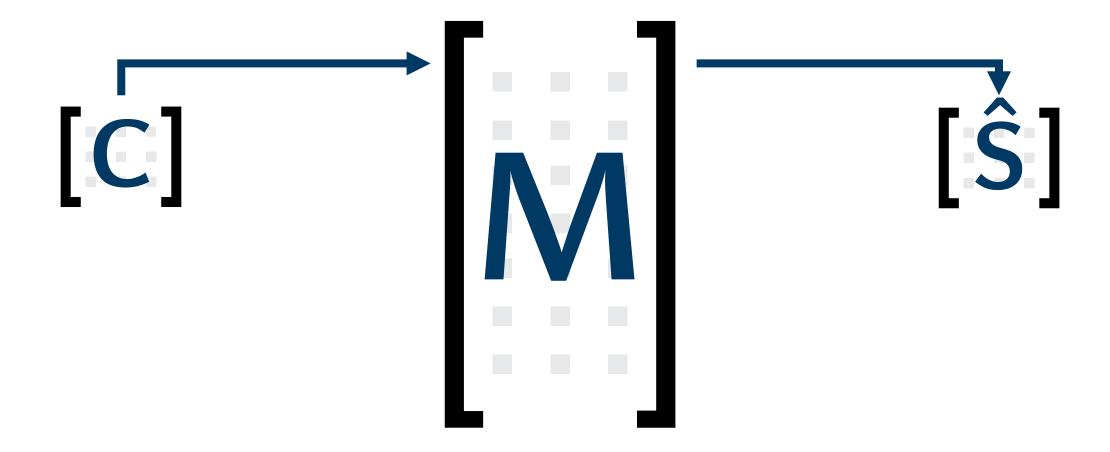
- ▶ [S] emantic matrix
 - contains semantic vectors for all word forms

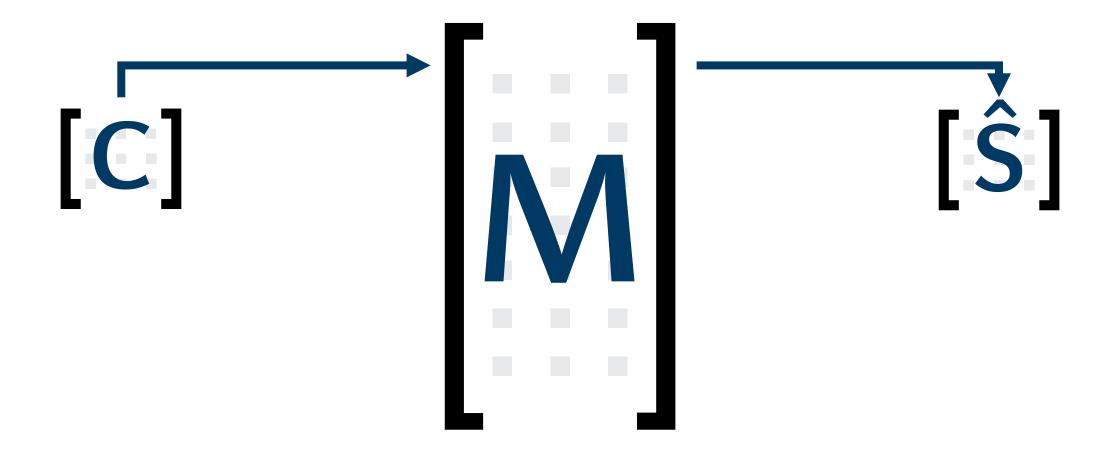

	classroom	college	cook	eat	vegetable	PL
/mil/	0.003	0.0005	0.9	0.8	0.7	0.2
/mit/	0.0006	0.0002	0.8	0.9	0.5	0.04
/stjudHt/	0.9	0.8	0.05	0.1	0.005	0.7
/tiJ@R/	0.8	0.8	0.09	0.003	0.02	0.5

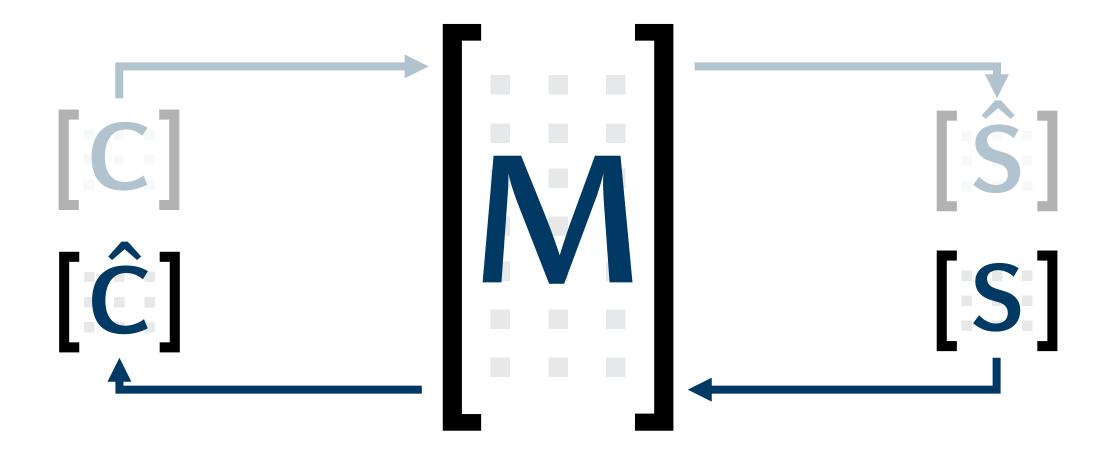

How do we obtain LDL measures?

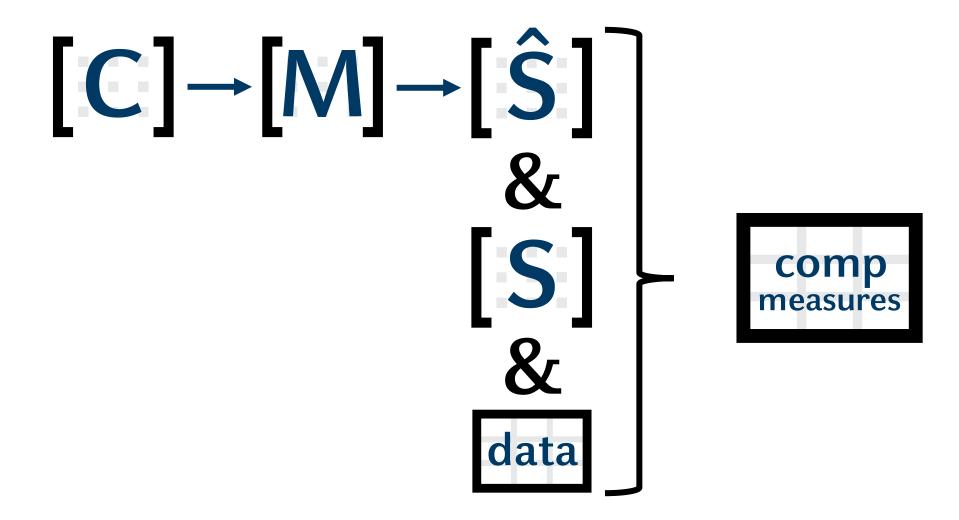
- 1. From data to matrices
- 2. From matrices to comprehension & production





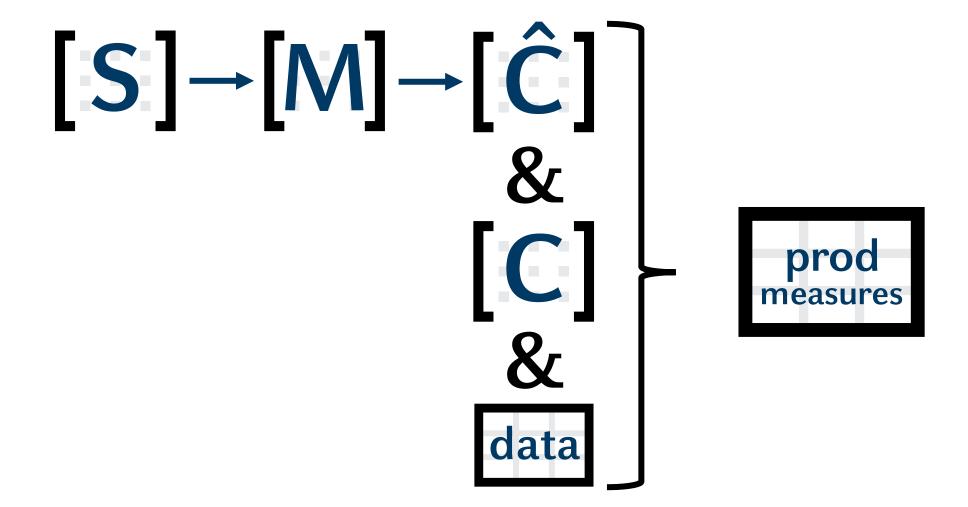






How do we obtain LDL measures?

- 1. From data to matrices
- 2. From matrices to comprehension & production
- 3. From comprehension & production to measures



Results

Results

a) Pseudowords

Results: Pseudowords

mapping data: 48 pseudowords; 24 monomorphemic, 24 plurals

Results: Pseudowords

mapping data: 48 pseudowords; 24 monomorphemic, 24 plurals

Comprehension accuracy: 100%

Production accuracy: 100%

Results: Pseudowords

mapping data: 48 pseudowords; 24 monomorphemic, 24 plurals

Comprehension accuracy: 100%

Production accuracy: 100%

LDL measures:

Results: Pseudowords

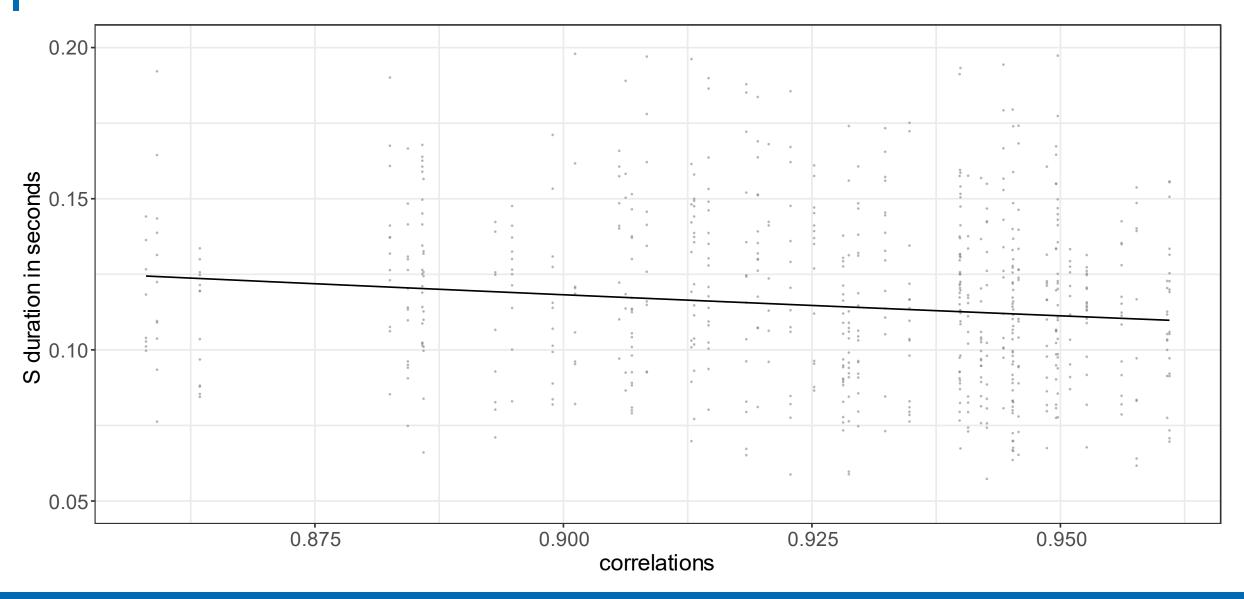
- mapping data: 48 pseudowords; 24 monomorphemic, 24 plurals
- ▶ Comprehension accuracy: 100%
- Production accuracy: 100%
- LDL measures:
 - b checking relative variable importance and correlations, 1 LDL measure is found to be a significant predictor for /s/ duration :

CORRELATIONS the correlation of the predicted path with the targeted semantic vector

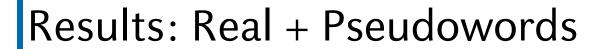
Results: Pseudowords

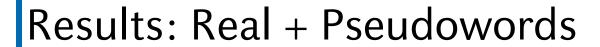
 mixed effects regression model for the non-morphemic and plural /s/ duration data from Schmitz et al. (2020)

- mixed effects regression model for the non-morphemic and plural /s/ duration data from Schmitz et al. (2020)
- fixed effects (after exclusion of non-significant variables):
 - CORRELATIONS
 - PAUSEBIN pause following the /s/: yes/no
 - ▶ FOLTYPE phone following the /s/: approximant, fricative, etc.
 - SPEAKINGRATELOG syllables per minute, log-transformed



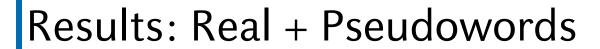
- mixed effects regression model for the non-morphemic and plural /s/ duration data from Schmitz et al. (2020)
- fixed effects (after exclusion of non-significant variables):
 - CORRELATIONS
 - PAUSEBIN pause following the /s/: yes/no
 - FOLTYPE phone following the /s/: approximant, fricative, etc.
 - SPEAKINGRATELOG syllables per minute, log-transformed
- random intercept:
 - SPEAKER




Results

- a) Pseudowords
- o) Real + Pseudowords

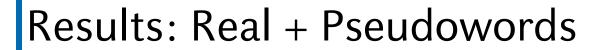
8328 words; 6186 monomorphemic, 2094 with affixes (25 plurals)



8328 words; 6186 monomorphemic, 2094 with affixes (25 plurals)

Comprehension accuracy: 98.4%

Production accuracy: 99.9%



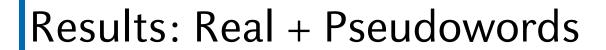
8328 words; 6186 monomorphemic, 2094 with affixes (25 plurals)

Comprehension accuracy: 98.4%

Production accuracy: 99.9%

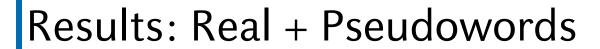
LDL measures:

8328 words; 6186 monomorphemic, 2094 with affixes (25 plurals)


Comprehension accuracy: 98.4%

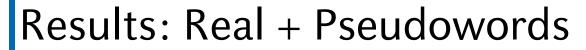
Production accuracy: 99.9%

LDL measures:

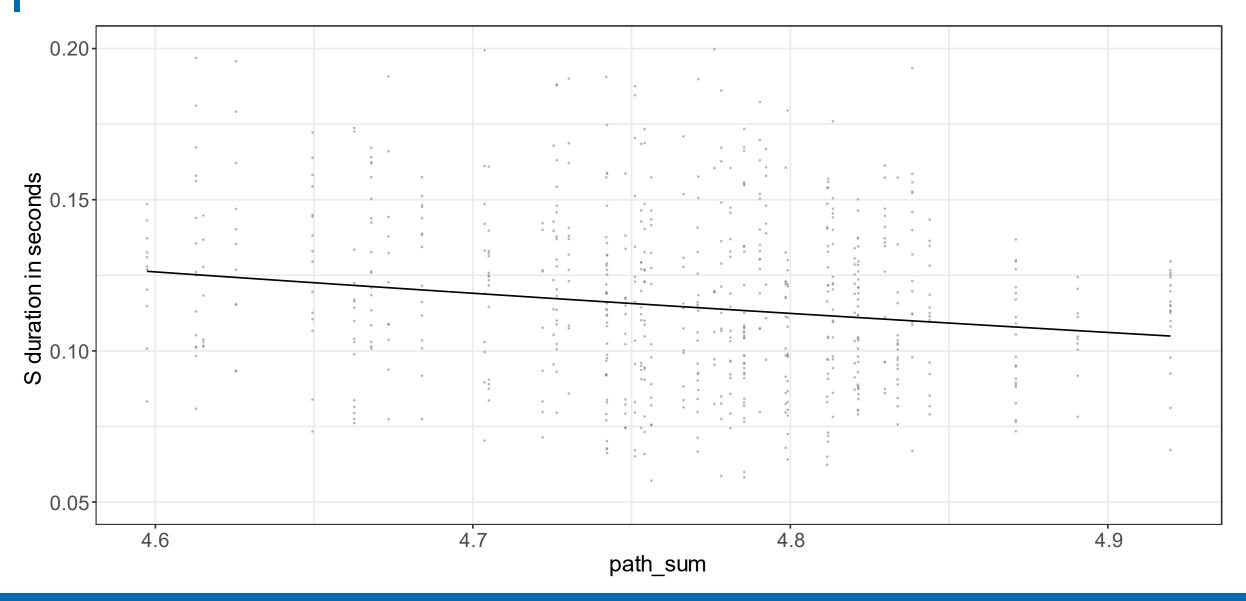

• checking relative variable importance and correlations, 1 LDL measure is found to be a significant predictor for /s/ duration:

PATH SUM the summed support for the predicted path

 mixed effects regression model for the non-morphemic and plural /s/ duration data from Schmitz et al. (2020)


- mixed effects regression model for the non-morphemic and plural /s/ duration data from Schmitz et al. (2020)
- fixed effects (after exclusion of non-significant variables):
 - PATH_SUM
 - PAUSEBIN
 - FOLTYPE
 - SPEAKINGRATELOG
- random intercept:
 - SPEAKER

Results: Real + Pseudowords



- mixed effects regression model for the non-morphemic and plural /s/ duration data from Schmitz et al. (2020)
- fixed effects (after exclusion of non-significant variables):

 - FOLTYPE
 - SPEAKINGRATELOG
- random intercept:
 - SPEAKER

Discussion

correlations	path_sum	/s/ duration
high	high	short
low	low	long

Discussion

	correlations	path_sum	/s/ duration
plural	high	high	short
monomorphemic	low	low	long

	correlations	path_sum	/s/ duration
plural	high	high	short
monomorphemic	low	low	long

- remaining questions:
 - ▶ Why are predicted paths of plurals more correlated to their targeted semantic vectors?
 - ▶ Why is the certainty in plurals higher than in monomorphemic words?

Conclusion

Conclusion

▶ Some LDL measures appear to be predictable for differences in /s/ durations, thus durational differences in word-final /s/ appear to emerge from the lexicon

Conclusion

- ▶ Some LDL measures appear to be predictable for differences in /s/ durations, thus durational differences in word-final /s/ appear to emerge from the lexicon
- ▶ However, further steps are necessary
 - use more data for mapping
 - use real semantics for real words, and derived semantics for pseudowords
 - analyse LDL measures not only for predicting /s/ durations in pseudowords but also for real words

References

- Baayen, R. H., Chuang, Y. Y., & Blevins, J. P. (2018). Inflectional morphology with linear mappings. *The Mental Lexicon* 13, 232-270.
- Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The Discriminative Lexicon: A Unified Computational Model for the Lexicon and Lexical Processing in Comprehension and Production Grounded Not in (De)Composition but in Linear Discriminative Learning. *Complexity*.
- Chuang, Y.-Y., Vollmer, M. L., Shafaei-Bajestan, E., Gahl, S., Hendrix, P., & Baayen, R. H. (2020). The processing of pseudoword form and meaning in production and comprehension: A computational modeling approach using linear discriminative learning. *Behavior Research Methods*.
- Li, H., Leonard, L., & Swanson, L. (1999). Some differences between English plural noun inflections and third singular verb inflections in the input: The contribution of frequency, sentence position and duration. *Journal of Child Language 26*, 531-543.
- Plag, I., Homann, J., & Kunter, G. (2017). Homophony and morphology: The acoustics of word-final S in English. Journal of Linguistics 53, 181-216.
- Plag, I., Ben Hedia, S., Lohmann, A., & Zimmermann, J. (2019). An <s> is an <s'>, or is it? Plural and genitive-plural are not homophonous. To appear in Körtvélyessy, L. & Stekauer, P. (Eds.) Complex Words. Cambridge: Cambridge University Press.
- Schmitz, D., Baer-Henney, D., & Plag, I. (2020). The duration of word-final /s/ differs across morphological categories in English: Evidence from pseudowords. Manuscript submitted for publication.
- Seyfarth, S., Garallek, M., Gillingham, G., Ackermann, F., & Malouf, R. (2017). Acoustic differences in morphologically-distinct homophones. *Language, Cognition and Neuroscience*, 1-18.
- Tomaschek, F., Plag, I., Baayen, R. H., & Ernestus, M. (2019). Phonetic effects of morphology and context: Modeling the duration of word-final S in English with naïve discriminative learning. *Journal of Linquistics*, 1-39.
- Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadic, F., & Sims, M. (2018). The massive auditory lexical decision (mald) database. *Behavior Research Methods*, 1-18.
- van de Vijver, R., & Baer-Henney, D. (2014). Developing biases. Frontiers in Psychology 8, 1-8.
- Walsh, T., & Parker, F. (1983). The duration of morphemic and non-morphemic /s/ in English. Journal of Phonetics 11, 201-206.
- Zimmermann, J. (2016). Morphological status and acoustic realization: Findings from NZE. In Carignan, C. & Tyler, M. D. (Eds.) *Proceedings of the Sixteenth Australasian International Conference on Speech Science and Technology (SST-2016)*, Parramatta, Australia, 6-9 December 2016. Canberra: ASSTA, 201-204.