How onset-alignment and semantics shape the auditory family size effect

by Hanno Müller, Louis ten Bosch, Mirjam Ernestus

February 8, 2022

Commonalities?

Family size

"The morphological family size is the type count of words in which a given target word (or, in the case of complex words, its base) appears as a constituent." - Winther Balling & Baayen (2008)

• In **visual** word recognition, the bigger a word's family size (FS), the faster it is recognized:

 In visual word recognition, the bigger a word's family size (FS), the faster it is recognized: Schreuder and Baayen (1997); Baayen, Lieber, and Schreuder (1997); Baayen, Dijkstra, and Schreuder (1997); Bertram, Baayen, and Schreuder (2000); De Jong IV, Schreuder, and Harald Baayen (2000); Jong (2002); Lüdeling and de Jong (2002); Moscoso del Prado Martín, Bertram, Häikiö, Schreuder, and Baayen (2004); del Prado Martín et al. (2005); Kuperman, Schreuder, Bertram, and Baayen (2009); Baayen, Milin, Đurđević, Hendrix, and Marelli (2011); Juhasz and Berkowitz (2011); Boudelaa and Marslen-Wilson (2011)

- In visual word recognition, the bigger a word's family size (FS), the faster it is recognized: Schreuder and Baayen (1997); Baayen, Lieber, and Schreuder (1997); Baayen, Dijkstra, and Schreuder (1997); Bertram, Baayen, and Schreuder (2000); De Jong IV et al. (2000); Jong (2002); Lüdeling and de Jong (2002); Moscoso del Prado Martín et al. (2004); del Prado Martín et al. (2005); Kuperman et al. (2009); Baayen et al. (2011); Juhasz and Berkowitz (2011); Boudelaa and Marslen-Wilson (2011)
- In auditory word recognition, the bigger a word's FS, ...

- In visual word recognition, the bigger a word's family size (FS), the faster it is recognized: Schreuder and Baayen (1997); Baayen, Lieber, and Schreuder (1997); Baayen, Dijkstra, and Schreuder (1997); Bertram, Baayen, and Schreuder (2000); De Jong IV et al. (2000); Jong (2002); Lüdeling and de Jong (2002); Moscoso del Prado Martín et al. (2004); del Prado Martín et al. (2005); Kuperman et al. (2009); Baayen et al. (2011); Juhasz and Berkowitz (2011); Boudelaa and Marslen-Wilson (2011)
- In auditory word recognition, the bigger a word's FS, ...
 - ... the faster it is recognized (Wurm et al., 2006; Winther Balling & Baayen, 2008)

- In visual word recognition, the bigger a word's family size (FS), the faster it is recognized: Schreuder and Baayen (1997); Baayen, Lieber, and Schreuder (1997); Baayen, Dijkstra, and Schreuder (1997); Bertram, Baayen, and Schreuder (2000); De Jong IV et al. (2000); Jong (2002); Lüdeling and de Jong (2002); Moscoso del Prado Martín et al. (2004); del Prado Martín et al. (2005); Kuperman et al. (2009); Baayen et al. (2011); Juhasz and Berkowitz (2011); Boudelaa and Marslen-Wilson (2011)
- In auditory word recognition, the bigger a word's FS, ...
 - ... the faster it is recognized (Wurm et al., 2006; Winther Balling & Baayen, 2008)
 - ... the slower it is recognized (Balling & Baayen, 2012)

- In visual word recognition, the bigger a word's family size (FS), the faster it is recognized: Schreuder and Baayen (1997); Baayen, Lieber, and Schreuder (1997); Baayen, Dijkstra, and Schreuder (1997); Bertram, Baayen, and Schreuder (2000); De Jong IV et al. (2000); Jong (2002); Lüdeling and de Jong (2002); Moscoso del Prado Martín et al. (2004); del Prado Martín et al. (2005); Kuperman et al. (2009); Baayen et al. (2011); Juhasz and Berkowitz (2011); Boudelaa and Marslen-Wilson (2011)
- In auditory word recognition, the bigger a word's FS, ...
 - ... the faster it is recognized (Wurm et al., 2006; Winther Balling & Baayen, 2008)
 - ... the slower it is recognized (Balling & Baayen, 2012)
 - ... the response latencies simply remain unchanged (Baayen et al., 2007)

Visual family size effect and semantics

• Exlusion of semantically opaque words strengthen FS effect (Schreuder &

Baayen, 1997; Bertram, Schreuder, & Baayen, 2000)

Visual family size effect and semantics

- Exlusion of semantically opaque words strengthen FS effect (Schreuder & Baayen, 1997; Bertram, Schreuder, & Baayen, 2000)
- In Finnish, families can have up to 7,000 members, but the FS effect is solely driven by semantically closely related words (Moscoso del Prado Martín et al., 2004)

- Exlusion of semantically opaque words strengthen FS effect (Schreuder & Baayen, 1997; Bertram, Schreuder, & Baayen, 2000)
- In Finnish, families can have up to 7,000 members, but the FS effect is solely driven by semantically closely related words (Moscoso del Prado Martín et al., 2004)
- Dutch irregular past participles such as 'gevochten' (fought) activate family of 'vechten' (to fight), but not 'vocht' (moisture) (De Jong IV et al., 2000)

Research question

Why is there no consistent family size effect in **auditory** word recognition?

Visual vs. auditory word recognition

• Written words perceived at once: fixations span several characters

- Written words perceived at once: fixations span several characters
- Spoken words perceived incrementally: signal unfolds over time

- Written words perceived at once: fixations span several characters
- Spoken words perceived incrementally: signal unfolds over time
- Time-course with which acoustic signal unfolds determines how words' morphological components become accessible

- Written words perceived at once: fixations span several characters
- Spoken words perceived incrementally: signal unfolds over time
- Time-course with which acoustic signal unfolds determines how words' morphological components become accessible
 - \bullet /lə:n/ activated later in /əʊvələ:n/ than in /lə:nəbil.ə.ti/

- Written words perceived at once: fixations span several characters
- Spoken words perceived incrementally: signal unfolds over time
- Time-course with which acoustic signal unfolds determines how words' morphological components become accessible
 - $\bullet~/{\rm lam}/$ activated later in /auvalam/ than in /lamabil.a.ti/
 - Both, reading "overlearn" and "learnability", may result in immediate extraction of "learn"

- Written words perceived at once: fixations span several characters
- Spoken words perceived incrementally: signal unfolds over time
- Time-course with which acoustic signal unfolds determines how words' morphological components become accessible
 - \bullet /lə:n/ activated later in /əʊvələ:n/ than in /lə:nəbil.ə.ti/
 - Both, reading "overlearn" and "learnability", may result in immediate extraction of "learn"

FS does not take sequential order into account

Morphological structure and family size

Morphological structure and family size

Morphological structure and family size

Prefixed might elicit different effect than simplex words

Family Size

Family Size

• overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable

Onset-aligned Family Size (Balling & Baayen, 2012)

Family Size

• overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable

Semantic Family Size

• overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable

Onset-aligned Family Size (Balling & Baayen, 2012)

Family Size

 overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable

Semantic Family Size

• overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable

Onset-aligned Family Size (Balling & Baayen, 2012)

Family Size

• overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable

Semantic Family Size

• overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable

Onset-aligned Family Size (Balling & Baayen, 2012)

Family Size

• overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable

Semantic Family Size

- overlearn: language learner, learned, learnedly, learnedness, learner, learners, overlearning, overlearns, machine learning, mislearn, overlearnability, overlearnable
 - → How to operationalize semantic relationship?

Onset-aligned Family Size (Balling & Baayen, 2012)

 Compute word vectors for word and every family member based on word2vec

- Compute word vectors for word and every family member based on word2vec
- Compute cosine similarity between word vector and every family member's vector

- Compute word vectors for word and every family member based on word2vec
- Compute cosine similarity between word vector and every family member's vector
 - Identical vectors have cosine similarity of 1

- Compute word vectors for word and every family member based on word2vec
- Compute cosine similarity between word vector and every family member's vector
 - Identical vectors have cosine similarity of 1
 - Orthogonal vectors have cosine similarity of -1

- Compute word vectors for word and every family member based on word2vec
- Compute cosine similarity between word vector and every family member's vector
 - Identical vectors have cosine similarity of 1
 - Orthogonal vectors have cosine similarity of -1
- Sum the cosine similarities of all family members

- Compute word vectors for word and every family member based on word2vec
- Compute cosine similarity between word vector and every family member's vector
 - Identical vectors have cosine similarity of 1
 - Orthogonal vectors have cosine similarity of -1
- Sum the cosine similarities of all family members

aanleren	afleren	bijleren	leer	leert	leerbaar	leerde	leraar	8
0.77	0.58	0.70	0.70	0.75	0.43	0.48	0.36	4.77

- Compute word vectors for word and every family member based on word2vec
- Compute cosine similarity between word vector and every family member's vector
 - Identical vectors have cosine similarity of 1
 - Orthogonal vectors have cosine similarity of -1
- Sum the cosine similarities of all family members
- 8 aanleren afleren bijleren leerbaar leerde leraar leer leert 0.770.58 0.70 0.70 0.750.43 0.48 0.36 4 77
- → Conceptually, each family member is weighted by its semantic similarity with target word
• Prediction of log RTs in BALDEY (Ernestus & Cutler, 2015)

- Prediction of log RTs in BALDEY (Ernestus & Cutler, 2015)
 - BALDEY contains lexical decision latencies from 20 native Dutch monolinguals to 2,780 content and 2,716 pseudowords = 110,820 observations

- Prediction of log RTs in BALDEY (Ernestus & Cutler, 2015)
 - BALDEY contains lexical decision latencies from 20 native Dutch monolinguals to 2,780 content and 2,716 pseudowords = 110,820 observations
 - Subset: 24,650 responses to 1,120 prefixed, 9,860 simplex, 13,400 suffixed, 4,100 prefixed & suffixed words

- Prediction of log RTs in BALDEY (Ernestus & Cutler, 2015)
 - BALDEY contains lexical decision latencies from 20 native Dutch monolinguals to 2,780 content and 2,716 pseudowords = 110,820 observations
 - Subset: 24,650 responses to 1,120 prefixed, 9,860 simplex, 13,400 suffixed, 4,100 prefixed & suffixed words
 - All words entailed in CELEX (Baayen et al., 1996) and

- Prediction of log RTs in BALDEY (Ernestus & Cutler, 2015)
 - BALDEY contains lexical decision latencies from 20 native Dutch monolinguals to 2,780 content and 2,716 pseudowords = 110,820 observations
 - Subset: 24,650 responses to 1,120 prefixed, 9,860 simplex, 13,400 suffixed, 4,100 prefixed & suffixed words
 - All words entailed in CELEX (Baayen et al., 1996) and
 - corpus of 650 million individual social media messages, news, blog and fora posts (basis for word2vec-model)

- Prediction of log RTs in BALDEY (Ernestus & Cutler, 2015)
 - BALDEY contains lexical decision latencies from 20 native Dutch monolinguals to 2,780 content and 2,716 pseudowords = 110,820 observations
 - Subset: 24,650 responses to 1,120 prefixed, 9,860 simplex, 13,400 suffixed, 4,100 prefixed & suffixed words
 - All words entailed in CELEX (Baayen et al., 1996) and
 - corpus of 650 million individual social media messages, news, blog and fora posts (basis for word2vec-model)
 - Exclusion: 2,451 incorrect responses (8.61%)

- Prediction of log RTs in BALDEY (Ernestus & Cutler, 2015)
 - BALDEY contains lexical decision latencies from 20 native Dutch monolinguals to 2,780 content and 2,716 pseudowords = 110,820 observations
 - Subset: 24,650 responses to 1,120 prefixed, 9,860 simplex, 13,400 suffixed, 4,100 prefixed & suffixed words
 - All words entailed in CELEX (Baayen et al., 1996) and
 - corpus of 650 million individual social media messages, news, blog and fora posts (basis for word2vec-model)
 - Exclusion: 2,451 incorrect responses (8.61%)
 - Exclusion: 1,379 outliers that are more than two SD away from mean log RT (5.6%) $_{\rm (Ratcliff, 1993)}$

- Prediction of log RTs in BALDEY (Ernestus & Cutler, 2015)
 - BALDEY contains lexical decision latencies from 20 native Dutch monolinguals to 2,780 content and 2,716 pseudowords = 110,820 observations
 - Subset: 24,650 responses to 1,120 prefixed, 9,860 simplex, 13,400 suffixed, 4,100 prefixed & suffixed words
 - All words entailed in CELEX (Baayen et al., 1996) and
 - corpus of 650 million individual social media messages, news, blog and fora posts (basis for word2vec-model)
 - Exclusion: 2,451 incorrect responses (8.61%)
 - Exclusion: 1,379 outliers that are more than two SD away from mean log RT (5.6%) $_{\rm (Ratcliff, 1993)}$
- Baseline: GAMs (Wood, 2017) with several co-variates (next slide) fitted following 'parsimonious account' of Bates et al. (2015)

• moving average response latency (maRT) (ten Bosch, Ernestus, & Boves, 2018)

- moving average response latency (maRT) (ten Bosch et al., 2018)
- trial number (Trial) (Ernestus & Cutler, 2015)

- moving average response latency (maRT) (ten Bosch et al., 2018)
- trial number (Trial) (Ernestus & Cutler, 2015)
- word duration (Duration) (Ernestus & Cutler, 2015; Tucker et al., 2019)

- moving average response latency (maRT) (ten Bosch et al., 2018)
- trial number (Trial) (Ernestus & Cutler, 2015)
- word duration (Duration) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- form frequency (FormFreq) (Ernestus & Cutler, 2015; Tucker et al., 2019)

- moving average response latency (maRT) (ten Bosch et al., 2018)
- trial number (Trial) (Ernestus & Cutler, 2015)
- word duration (Duration) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- form frequency (FormFreq) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- phonological neighborhood density (PhonND) (Tucker et al., 2019)

- moving average response latency (maRT) (ten Bosch et al., 2018)
- trial number (Trial) (Ernestus & Cutler, 2015)
- word duration (Duration) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- form frequency (FormFreq) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- phonological neighborhood density (PhonND) (Tucker et al., 2019)
- semantic neighborhood density (SemanticND) (Reilly & Desai, 2017)

- moving average response latency (maRT) (ten Bosch et al., 2018)
- trial number (Trial) (Ernestus & Cutler, 2015)
- word duration (Duration) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- form frequency (FormFreq) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- phonological neighborhood density (PhonND) (Tucker et al., 2019)
- semantic neighborhood density (SemanticND) (Reilly & Desai, 2017)
- form identification point (FIP) (Ernestus & Cutler, 2015)

- moving average response latency (maRT) (ten Bosch et al., 2018)
- trial number (Trial) (Ernestus & Cutler, 2015)
- word duration (Duration) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- form frequency (FormFreq) (Ernestus & Cutler, 2015; Tucker et al., 2019)
- phonological neighborhood density (PhonND) (Tucker et al., 2019)
- semantic neighborhood density (SemanticND) (Reilly & Desai, 2017)
- form identification point (FIP) (Ernestus & Cutler, 2015)
 - Correlations between: Duration, FIP, PhonND, \rightarrow PCA

	AIC	ΔAIC
Baseline	52242	-

	AIC	ΔAIC
Baseline	52242	-
FS	52196	-45***

	AIC	ΔAIC
Baseline	52242	-
FS	52196	-45***
FS*morph. structure	52123	-66***

	AIC	ΔAIC
Baseline	52242	-
FS	52196	-45***
FS*morph. structure	52130	-66***
FS onset-aligned*morph. structure	52126	-4

	AIC	ΔAIC
Baseline	52242	-
FS	52196	-45***
FS*morph. Structure	52130	-66***
FS onset-aligned*morph. structure FS semantic*morph. structure	52126 52112	-4 -18***

	AIC	ΔAIC
Baseline	52242	-
FS	52196	-45***
FS*morph. Structure	52130	-66***
FS onset-aligned*morph. structure FS semantic*morph. structure FS semantic onset-aligned*morph. structure	52126 52112 52094	-4 -18*** -136***

Model summary

	edf	Ref.df	F	p-value
s(FsOaSemantic):Simplex	2.710	3.350	19.643	< 2e-16***
s(FsOaSemantic):Prefix	1.768	2.216	2.999	0.06379.
s(FsOaSemantic):PrefixSuffix	1.001	1.002	0.691	0.40516
s(FsOaSemantic):Suffix	6.942	7.973	6.121	< 2e-16***

H. Müller, L. ten Bosch, M. Ernestus

Effect size of family size for suffixed words

H. Müller, L. ten Bosch, M. Ernestus

• Family size does not only play a role in visual, but also in auditory word recognition ($\Delta AIC = 45 * **$)

- Family size does not only play a role in visual, but also in auditory word recognition ($\Delta AIC = 45 * **$)
- A significant interaction between FS and morph. structure $(\Delta AIC = 66 * **)$ suggests that morph. structure shapes FS effect

- Family size does not only play a role in visual, but also in auditory word recognition ($\Delta AIC = 45 * **$)
- A significant interaction between FS and morph. structure $(\Delta AIC = 66 * **)$ suggests that morph. structure shapes FS effect
 - FS effect surfaces only in monomorphemic and suffixed words

- Family size does not only play a role in visual, but also in auditory word recognition ($\Delta AIC = 45 * **$)
- A significant interaction between FS and morph. structure $(\Delta AIC = 66 * **)$ suggests that morph. structure shapes FS effect
 - FS effect surfaces only in monomorphemic and suffixed words
 - Shape of FS effect for suffixed words not very clear

- Family size does not only play a role in visual, but also in auditory word recognition ($\Delta AIC = 45 * **$)
- A significant interaction between FS and morph. structure $(\Delta AIC = 66 * **)$ suggests that morph. structure shapes FS effect
 - FS effect surfaces only in monomorphemic and suffixed words
 - Shape of FS effect for suffixed words not very clear
 - No effect for prefixed words → Due to decomposition of prefixed words? (CRUP; (Wurm, 1997))

- Family size does not only play a role in visual, but also in auditory word recognition ($\Delta AIC = 45 * **$)
- A significant interaction between FS and morph. structure $(\Delta AIC = 66 * **)$ suggests that morph. structure shapes FS effect
 - FS effect surfaces only in monomorphemic and suffixed words
 - Shape of FS effect for suffixed words not very clear
 - No effect for prefixed words → Due to decomposition of prefixed words? (CRUP; (Wurm, 1997))
 - In-depth analysis of FS for different morphological structures needed
 → subject of ongoing research

• Family size not only plays a role in visual, but also in auditory word recognition

- Family size not only plays a role in visual, but also in auditory word recognition
- FS effect is absent for prefixed words, which is probably due to the nature of spoken words

- Family size not only plays a role in visual, but also in auditory word recognition
- FS effect is absent for prefixed words, which is probably due to the nature of spoken words
 - → in prefixed words, the stem becomes accessible later than in simplex or suffixed words

- Baayen, R. H., Dijkstra, T., & Schreuder, R. (1997). Singulars and plurals in Dutch: Evidence for a parallel dual-route model. Journal of Memory and Language, 37(1), 94–117.
- Baayen, R. H., Lieber, R., & Schreuder, R. (1997). The morphological complexity of simplex nouns.
- Baayen, R. H., Milin, P., Durđević, D. F., Hendrix, P., & Marelli, M. (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological review*, 118(3), 438.
- Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1996). The celex lexical database (cd-rom). Linguistic Data Consortium.
- Baayen, R. H., Wurm, L. H., & Aycock, J. (2007). Lexical dynamics for low-frequency complex words: A regression study across tasks and modalities. *The Mental Lexicon*, 2(3), 419–463.
- Balling, L. W., & Baayen, R. H. (2012). Probability and surprisal in auditory comprehension of morphologically complex words. Cognition, 125(1), 80–106.
- Bates, D., Kliegl, R., Vasishth, S., & Baayen, R. H. (2015). Parsimonious mixed models. arXiv preprint arXiv:1506.04967.
- Bertram, R., Baayen, R. H., & Schreuder, R. (2000). Effects of family size for complex words. Journal of Memory and Language, 42(3), 390–405.
- Bertram, R., Schreuder, R., & Baayen, R. H. (2000). The balance of storage and computation in morphological processing: The role of word formation type, affixal homonymy, and productivity. *Journal of experimental psychology: Learning, memory, and cognition, 26*(2), 489.
- Boudelaa, S., & Marslen-Wilson, W. D. (2011). Productivity and priming: Morphemic decomposition in arabic. Language and Cognitive Processes, 26(4-6), 624–652.
- De Jong IV, N. H., Schreuder, R., & Harald Baayen, R. (2000). The morphological family size effect and morphology. Language and cognitive processes, 15(4-5), 329–365.
- del Prado Martín, F. M., Deutsch, A., Frost, R., Schreuder, R., De Jong, N. H., & Baayen, R. H. (2005). Changing places: A cross-language perspective on frequency and family size in dutch and hebrew. *Journal of Memory and Language*, 53(4), 496–512.
- Ernestus, M., & Cutler, A. (2015). Baldey: A database of auditory lexical decisions. Quarterly Journal of Experimental Psychology, 68(8), 1469–1488.
- Jong, N. H. d. (2002). Morphological families in the mental lexicon. [SI: sn].
- Juhasz, B. J., & Berkowitz, R. N. (2011). Effects of morphological families on english compound word recognition: A multitask investigation. Language and Cognitive Processes, 26(4-6), 653–682.
- Kuperman, V., Schreuder, R., Bertram, R., & Baayen, R. H. (2009). Reading polymorphemic dutch compounds: toward a multiple route model of lexical processing. *Journal of Experimental Psychology: Human Perception and Performance*, 35(3), 876.
- Lüdeling, A., & de Jong, N. (2002). German particle verbs and word formation. Verb-particle Explorations, 1, 315.
- Moscoso del Prado Martín, F., Bertram, R., Häikiö, T., Schreuder, R., & Baayen, R. H. (2004). Morphological family size in a morphologically rich language: the case of finnish compared with dutch and hebrew. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 30(6), 1271.

Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological bulletin, 114(3), 510.

- Reilly, M., & Desai, R. H. (2017). Effects of semantic neighborhood density in abstract and concrete words. Cognition, 169, 46–53.
- Schreuder, R., & Baayen, R. H. (1997). How complex simplex words can be. Journal of memory and language, 37(1), 118– 139.
- ten Bosch, L., Ernestus, M., & Boves, L. (2018). Analyzing reaction time sequences from human participants in auditory experiments. In *Interspeech 2018*. Hyderabad, India: ISCA.
- Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., & Sims, M. (2019). The massive auditory lexical decision (mald) database. Behavior Research Methods, 51(3), 1187–1204.
- Winther Balling, L., & Baayen, R. H. (2008). Morphological effects in auditory word recognition: Evidence from danish. Language and Cognitive Processes, 23(7-8), 1159–1190.
- Wood, S. N. (2017). Generalized additive models: an introduction with r. CRC press.
- Wurm, L. H. (1997). Auditory processing of prefixed english words is both continuous and decompositional. Journal of Memory and Language, 37(3), 438–461.
- Wurm, L. H., Ernestus, M. T., Schreuder, R., & Baayen, R. H. (2006). Dynamics of the auditory comprehension of prefixed words: Cohort entropies and conditional root uniqueness points. *The Mental Lexicon*, 1(1), 125–146.