

Articulatory patterns of monomorphemic and dimorphemic homophonous words

Fabian Tomaschek

Department of Quantitative Linguistics, University of Tübingen Spoken Morphology Colloquium Series, July 13, 2007

Hypotheses and Methods

Hypothesis

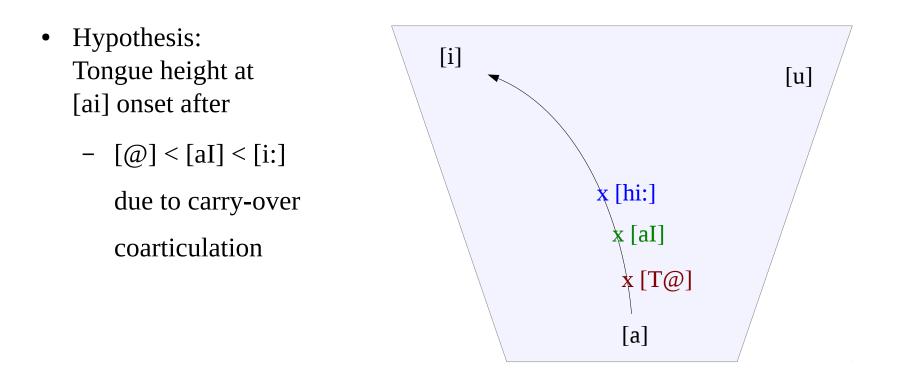
- Given findings that phonetic signals (acoustic and articulatory) vary depending on the morphological structure (cf. Cho, 2011; Lee-Kim, 2013; Plag et al. 2017, etc.) we hypothesize that articulations of stem vowels in monosyllabic words will differ depending on whether the final coda will be morphemic or not (/aI#d/, vs. /aId/).

Methods

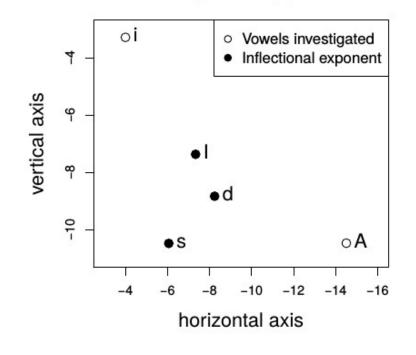
- 18 Speakers
- Number of [aId] words
 - 16 monomorphemic
 - 12 diphorphemic
- Categories
 - Dimorphemic (i.e. [aI#d])
 - pried (**past**)
 - Monomorphemic (i.e. [aId])
 - a) pride (**noun**)
 - b) pride (**verb**)
- Number of
 - Triplets = 3 (e.g. I pride, the pride, he's pried)
 - Doublets = 5 (e.g. I guide, the guide)
 - Single = 15 (the bride)

Presentation of stimuli

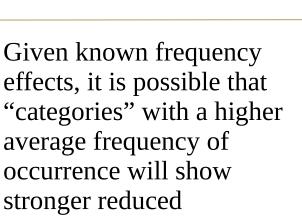
- Carrier sentence included "morphological marker"
 - Say "He's pried" again (Vpast, dimorph)
 - Say "I pride" again (**Vpres**, monomorph)
 - Say "the pride" again (**Nsng**, monomorph)
- Experimental set up (Condition)
 - Blocked sessions (9 speakers)
 - First half of experiment: All dimorph words
 - Second half of experiment: All monomorph words
 - Mixed sessions (9 speakers)
 - Monomorph & dimorph words totally randomized across expriment


Phonetic effects: Overlay articulation (onset of [ai])

- Carrier sentence included "morphological marker"
 - Say "He's pried" again (Vpast, dimorph)
 - Say "I pride" again (Vpres, monomorph)
 - Say "the pride" again (Nsng, monomorph)


Phonetic hypothesis: Carryover articulation (onset of [ai])

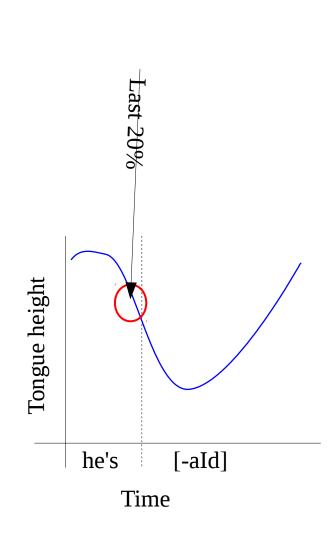
- Possible effects of carryover coarticulation from previous word
 - Say "He's pried" again (Vpast, dimorph) \rightarrow [hi:] + [ai]
 - Say "I pride" again (Vpres, monomorph) \rightarrow [aI] + [ai]
 - Say "the pride" again (Nsng, monomorph) \rightarrow [T@] + [ai]



Additional hypotheses

 Given that morphemic boundaries are a locus of higher phonotactic variability, it is possible that a morphemic coda is less well learned than a non-morphemic coda, therefore we should find less anticipatory coarticulation between the vowel and the coda.

Mean tongue body positions


articulations

Log Google counts for phrases:

		Beta	SE	Т	Р
Vpast (Intercept)		9.3	0.56	16.4	< 0.001
Morp	Vpres	4.0	0.89	4.5	< 0.001
Morph	Nsng	7.0	0.84	8.3	< 0.001

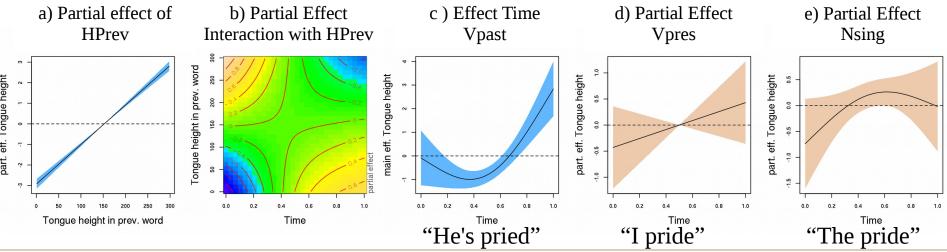
Analysis

- Tongue height of tongue body in [aI] across time.
- Smooths and tensors in Generalized Additive Mixed-Effect Model
- Individual models in each condition (Blocked, Randomized)
- Predictor structure
 - Controls
 - Time * Segment duration
 - Time * Frequency \rightarrow not significant
 - Effect of interest
 - Time * Morphology (Vpast, Vpres, Nsing)
 - Time * Median tongue height in the last 20 % of the previous word (to control for overlay coarticulation: HPrev. Values are ranked)
 - Random effects
 - Random factor smooths by participant
 - Random factor smooth by phrase (He's/I/the + word)

Analysis and Results

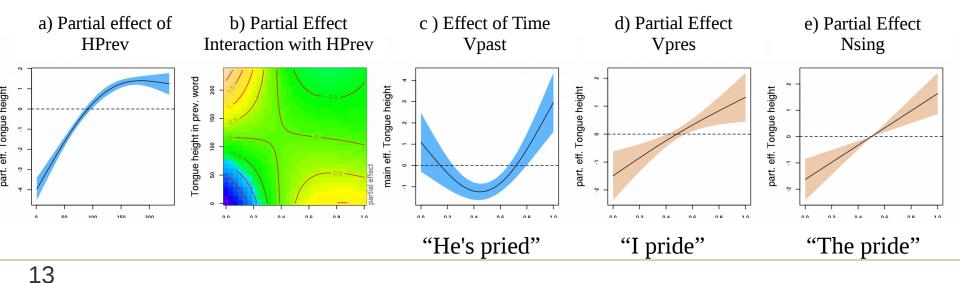
Analysis of vowel duration

- Vowel duration of [aI] analyzed in a linear mixed-effect model (predictors: frequency & word category, random intercepts for participants and words)
 - no significant differences between the dimorphemic Vpast and the monomorphemic Vpres and Nsng words were found
 - no effect of frequency of occurrence (google phrase counts, e.g. "he's pried") was found

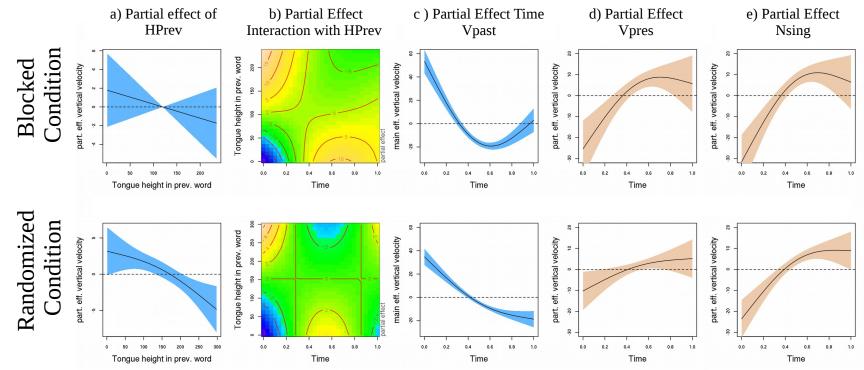

Fixed effects:

Beta	SE	Т
-1.57	0.064	-24.7
-0.001	0.002	-0.768
-0.005	0.05	-0.093
0.04	0.06	0.690
	-1.57 -0.001 -0.005	-1.570.064-0.0010.002-0.0050.05

Tongue height in [aI] – Randomized condition


- Tongue height in [aI]....
 - a) ... is proportional in the entire vowel to tongue height in the last 20% of the previous word (HPrev).
 - b) ... across time interacts with HPrev across time insofar as with HPrev values onset tongue positions in [aI] are lowered and offset positions are raised; the effect is reversed with high HPrev values.
 - c) Main effect in Vpast: tongue body describes a raising movement pattern across time
 - d) Partial effect (difference) to [aI] in Vpres: No significant difference to Vpast
 - e) Partial effect to [aI] in Nsing: No significant difference to Vpast

Tongue height in [aI] – Blocked condition

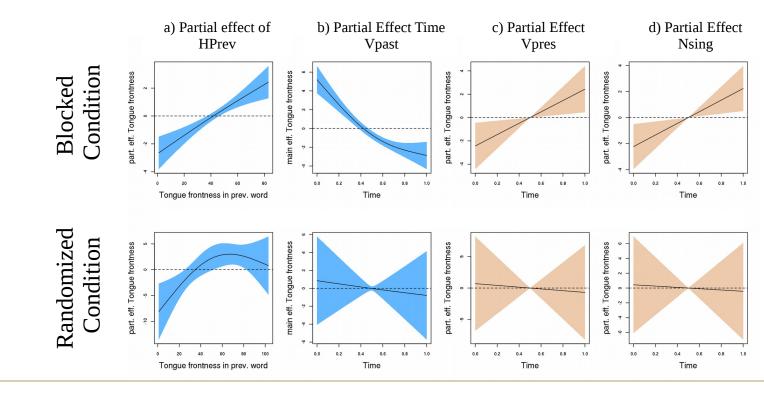

- Tongue height in [aI]....
 - a) ... is proportional in the entire vowel to tongue height in the last 20% of the previous word (HPrev).
 - b) ... across time interacts with HPrev across time insofar as with HPrev values onset tongue positions in
 [aI] are decreased and offset positions are increased; the effect is reversed with high HPrev values.
 - c) Main effect in Vpast: tongue body describes a u-shaped movement pattern across time
 - d) Partial effect of [aI] in Vpres (i.e. difference to [aI] in Vpast): onset positions are lowered, offset positions are raised in contrast to Vpast
 - e) Partial effect in Nsing: onset positions are lowered, offset positions are raised in contrast to Vpast

Absolute **velocity** across time

- Absolute movement velocity in [aI] ...
 - a & b)... is not affected by HPrev in the blocked but in the randomized condition. In both conditions Hprev interacts with time.
 - c) ... is high at the onset in both conditions. In the blocked condition, it decreases towards ~ time point 0.6 and then increases towards the offset. In the randomized condition, it steadily decreases towards the offset .
 - d&e) is decreased at the onset and increased at the offset of the vowel in both conditions

Summary for [aId] words

- Effect of overlay coarticulation on onset
 - Hypothesis: [aI] following [T@] < [aI] < [hi:]
 - Results in blocked condition:
 [aI] following [aI, T@] < [hi:]
 - Results in randomized condition:
 [aI] following [aI] = [T@] = [hi:]
- Effects of morphological category onto entire trajectory in blocked condition
 - Larger tongue movement amplitude in monomorphemic than in dimorphemic words in spite of control for carryover coarticulation!
- Possible explanation for effect of condition:
 - uncertainty about morphology was lower in blocked condition than in randomized condition, where no expectation could be built up due to randomization
 - this possibly allowed speakers to come up with a strategy for articulation


Replication

Testing the model from [-aId] words in [-aUd] words

- Material:
 - monomorphemic (3 "I" words, 5 "The" words)
 - dimorphemic (4 "he's" words)
- Analysis
 - The same model like for [-aId] words
- Peak on results:
 - no effects at all (!!!) in the vertical axis, not even across time!
 - only an effect in the horizontal axis

Horizontal **tongue body** position in [-aU]+[d]

- Horizontal tongue body positions in [aU]...
 - a) ... are proportional to frontness in previous word in both conditions
 - b) ... are constantly retracted across time, but only so in blocked condition
 - c&d) ... show shallower retraction in the monomorphemic words in the blocked condition

Conclusion

- Effect of condition from [-aId] words replicated for [-aUd] words.
- Direction of effect is reversed insofar that articulations become smaller in the monomorphemic words.

Thanks for listening

