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Abstract Many theories of word structure in linguistics and morphological process-
ing in cognitive psychology are grounded in a compositional perspective on the (men-
tal) lexicon in which complex words are built up during speech production from sub-
lexical elements such as morphemes, stems, and exponents. When combined with the
hypothesis that storage in the lexicon is restricted to the irregular, the prediction fol-
lows that properties specific to regular inflected words cannot co-determine the pho-
netic realization of these inflected words. This study shows that the stem vowels of
regular English inflected verb forms that are more frequent in their paradigm are pro-
duced with more enhanced articulatory gestures in the midsaggital plane, challenging
compositional models of lexical processing. The effect of paradigmatic probability
dovetails well with the Paradigmatic Enhancement Hypothesis and is consistent with
a growing body of research indicating that the whole is more than its parts.
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1 Introduction

Many theories of word structure in linguistics and morphological processing in cogni-
tive psychology are grounded in a compositional perspective on the (mental) lexicon
in which complex words are composed during speech production from (and decom-
posed during comprehension into) sublexical elements such as morphemes, stems,
and exponents (see Ramscar and Port 2016, for a critical review). When combined
with the hypothesis that storage in the lexicon is restricted to irregular words, the
prediction follows that properties specific to regular inflected words should not co-
determine the phonetic realization of these inflected words. This study shows that the
stem vowels of more frequent regular English inflected verb forms are produced with
more enhanced articulatory gestures in the midsaggital plane, challenging strictly
compositional models of the lexicon and lexical processing.

In what follows, we first provide an overview of some influential models of lex-
ical processing and the role of decomposition and frequency of occurrence in these
models. Subsequently, we discuss the challenges for compositional theories posed
by a growing body of literature that documents how the phonetic detail of regular
complex words is to some extent predictable from whole-word properties, including
whole-word frequency.

The core of this study is a production experiment using electromagnetic articulog-
raphy to study tongue movements in the midsaggital plane for two stem vowels in
English regular inflected verb forms. The central question addressed by this experi-
ment is whether the experience that speakers have with the inflected verb form itself
is predictive for how the tongue’s articulatory gestures are executed. Anticipating
the results, we observed articulatory enhancement for words that are more frequent
within their inflectional paradigm, a result that dovetails well with the Paradigmatic
Enhancement Hypothesis (Kuperman et al. 2007). In the General Discussion, we re-
flect on the implications of these findings, which are consistent with a growing body
of research reporting that the whole is more than its parts, for both linguistic and
cognitive theories of the lexicon.

2 Models of word production

Formal theories of word structure seek to provide a characterization of lexical knowl-
edge that is maximally parsimonious, while at the same time providing correct pre-
dictions about what word forms are possible. Several theoretical frameworks model
the morphological system as a lexical calculus, which combines a set of basic units
(stems, affixes, morphemes) with a set of rules for assembling these units into well-
formed combinations. These frameworks differ with respect to the nature of the units.
Item-and-Arrangment theories (Hockett 1954) assume that these units are Saussurian
signs (Saussure 1916). Paradigm Function Morphology (Stump 2001; Bonami and
Stump 2016) works with stems and formatives (exponents) as basic units of form,
and provides rule systems that regulate how bundles of semantic features are ex-
pressed in combinations of stems and exponents. The mapping between form prim-
itives and semantic primitives is no longer constrained to be one-on-one: Multiple
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semantic features can be realized in one exponent, and one semantic feature can be
realized in multiple exponents. Distributed Morphology (Halle and Marantz 1994;
Marantz 2013), which merges morphology into syntax, is also a realizational theory.
Vocabulary insertion rules specify how to assemble stems and exponents given sets
of inflectional and syntactic features at terminal nodes of syntactic trees.

A completely different perspective is presented by Word and Paradigm Morphol-
ogy that takes whole words to be the basic unit of morphological analysis (Matthews
1991). Stems and exponents have no theoretical status, but are useful for describ-
ing proportional analogies within paradigms. These analogies are assumed to drive
inflectional productivity. Inspired by Discriminative Learning (Ramscar and Yarlett
2007; Ramscar et al. 2010, 2013a,b; Baayen et al. 2011), a computational model that
implements Word and Paradigm Morphology was proposed in Baayen et al. (2019),
under the name of the Discriminative Lexicon. The Discriminative Lexicon does not
work with lexical representations for form and meaning that are stored in some list-
like dictionary. The networks of the Discriminative Lexicon are its memory. A word’s
meaning is generated on the fly from visual or acoustic input, and a word’s form is
generated on the fly given the message the speaker is seeking to encode, without re-
quiring constructs such as morphemes, stems, and exponents (Baayen et al. 2018b;
Chuang et al. 2020).

These various models of the lexicon differ with respect to how they view the re-
lation between morphological theory and the neural architectures subserving lexical
processing, on the one hand, and lexical processing and phonetic realization on the
other hand. Item-and-Arrangement (Hockett 1954), Word and Paradigm Morphology
(Matthews 1991), and Paradigm Function Morphology (Stump 2001; Bonami and
Stump 2016) do not make any claims about whether their algorithmic structure might
provide a blueprint of cognitive mechanisms, and consequently how they shape pho-
netic realizations.

The version of Word and Paradigm Morphology developed by Blevins (2016) ar-
gues that only words have cognitive reality, maintaining that stems and exponents are
useful descriptive devices only. The Discriminative Lexicon (Baayen et al. 2019) is a
theory that goes a step further. It purports to provide a blueprint of the mental lexicon.
Since the simple networks that it works with are far removed from real neural net-
works, this blueprint is a functional one. The networks serve as a mathematical tool
for predicting words forms and meanings, the cognitive costs of lexical processing
in comprehension and production, and the fine phonetic detail with which words are
produced.

Among formal theories, Distributed Morphology also claims to provide a blueprint
for the neural architecture of lexical processing (Pylkkänen et al. 2004; Solomyak and
Marantz 2010; Marantz 2013; Pinker 1999), and the same holds for the dual mech-
anism model of Pinker (1997). One claim made by Distributed Morphology and the
Dual Mechanism model is that regular complex words do not have representations
in the mental lexicon. The mental lexicon posited by these theories is maximally
parsimonious, allowing as basic units of the morphological calculus only stems, ex-
ponents, and irregular complex words. These theories rule out that the frequency with
which regular complex words are used would be predictive for how they are processed
and articulated. It is noteworthy that this prediction does not follow from linguistic
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theories themselves. For instance, Jackendoff (1975) has argued that regular com-
plex words are stored, but that within a linguistic evaluation metric for parsimony,
this storage does not make the grammar more complex. One way in which this in-
sight can be re-conceptualized is that under a good compression scheme, the costs of
storing regular complex forms is much smaller than is the case in a lexicon without
compression. Complex words can be added to a lexical inventory with minimal addi-
tional storage requirements, precisely because they are so predictable (see also Juola
1998).

The insight of Jackendoff (1975) has not been taken up by mainstream psycholin-
guistics. Psycholinguistic models (e.g. Rastle et al. 2004; Smolka et al. 2009) have
mostly adopted constituent-based approaches to lexical processing that sometimes
resemble realizational theories and sometimes are closer to item-and-arrangement
models. Accordingly, psycholinguistic models adopt the principle of parsimony that
rules out representations in the mental lexicon for regular complex words. Hence,
these theories, like Distributed Morphology and the Dual Mechanism Model, also
predict that the frequency with which regular complex words are used is irrelevant
for predicting how such words are produced.

Consider, for instance, one influential model of speech production, the
WEAVER++ model (Roelofs 1997b; Levelt et al. 1999). Content words are cou-
pled with one or more lemma representations, which are abstract place holders for
dictionary entries, which are linked to inflectional feature nodes. The constellation
of a lemma and its active inflectional nodes jointly drive the selection of stems and
exponents at the form level. These stems and exponents in turn activate phone units,
which subsequently are bundled into syllables. Syllables constitute the input for artic-
ulatory motor programs, such as those proposed by Browman and Goldstein (1986),
Guenther (1995), Turk and Shattuck-Hufnagel (2020). Importantly, in this modular
feed-forward system, the selection and activation of lower-level units is driven en-
tirely by the units found one level up in the hierarchy. WEAVER++ allows frequency
of occurrence to play a role at two stages of the model, lemma access and sylla-
ble access (Jescheniak and Levelt 1994; Schriefers et al. 1990; Levelt et al. 1991;
Roelofs 1997a; Cholin et al. 2004, 2006). The architecture of WEAVER++ is explic-
itly designed in such a way that neighborhood density and the frequencies with which
complex words occur cannot co-determine articulation.

The interactive activation model of Dell (1986) shares with WEAVER++ a hier-
archy of representational levels and processes operating on these levels. The way in
which this model is set up appears to be somewhat closer to item-and-arrangement
morphology. For instance, semantic units for inflectional functions such as plurality
are linked up with the corresponding form units. The model does not incorporate se-
mantic units or form units for complex words, and hence it does not predict effects
of whole-word frequency. A related model using the mechanism of interactive ac-
tivation is the semantic-phonological model (Foygel and Dell 2000; Dell 1990; Dell
et al. 1997; Schwartz and Brecher 2000; Schwartz et al. 2006; Dell et al. 2007), which
works with a semantic layer, a word form layer, and a phonological layer. In order to
model the word frequency effect, the model assigns different association strengths to
the connections between units, across all three levels (Kittredge et al. 2008). The
model has not addressed the production of morphologically complex words, and
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whole-word frequency effects are unlikely to be within the scope of the model as
long as whole-word semantic and form representations are not added to the model’s
inventory of representations.

Production models that incorporate learning—such as the past-tense model
(Rumelhart and McClelland 1986), Discriminative Learning models of plural produc-
tion (Ramscar and Yarlett 2007; Ramscar et al. 2010, 2013b), the multi-layer back-
propagation model (Mirkovic et al. 2011), and the Discriminative Lexicon model
(Baayen et al. 2019; Chuang et al. 2020)—are inherently sensitive to the frequency
with which they encounter words in their input. As models are trained incremen-
tally, network weights will become honed towards words that occur more often in
the training data. However, the performance of these models does not only depend
on the frequency of occurrence of words during learning, but also, critically, on the
similarity structure of their forms and meanings, and the frequencies of words similar
in form and meaning that are encountered during learning.

3 The phonetic realization of complex words

Linguistic theories of morphology, as well as compositional models of speech pro-
duction in psychology, produce phonological representations at their output level.
These representations typically consist of a sequence of syllables. At the supraseg-
mental level, sequences of syllables can be grouped into feet and at the segmental
level, they can be further broken down into onsets and rimes. Following the hypoth-
esis of the dual articulation of language (Martinet 1965), the way that sounds and
syllables are organized follows its own rules. These rules operate independently of
words’ meanings and the stems and exponents that were used to assemble the sounds,
syllables, and their ordering in time. Furthermore, all compositional models share the
assumption that words have canonical, abstract, phonological representations. Even
though actual phonetic realizations may diverge from canonical representations, it
is assumed that these actual phonetic realizations can be adequately and completely
handled by phonetic rules that operate on the phonological representations.

3.1 Phonetic variation and morphological complexity

One problem that models with this strict division of labor run into is that how words
are actually pronounced can differ substantially from canonical phonological repre-
sentations in unpredictable ways (see, e.g. Johnson 2004; Ernestus et al. 2002; Kemps
et al. 2004). Not only is it the case that many reduced forms cannot simply be derived
by rule from the corresponding canonical forms (Ernestus 2000), but also the vari-
ability in the production of individual words increases as their frequency increases
(Linke and Ramscar 2020).

Importantly, many ‘aberrant’ phonetic variants typically express a wide range of
pragmatic features that are an intrinsic part of the message (Hawkins 2003). This
holds not only for monomorphemic words, but also for complex words (Keune et al.
2005). Hanique and Ernestus (2012) reported that phonetic reduction in morphologi-
cally complex words was consistently predicted by the frequency of the whole word
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rather than by measures tied to constituents, a result that is consistent with recent
findings for language comprehension (Giraudo and Orihuela 2015; Schmidtke et al.
2017).

A further problem for classical compositional models is that, over the last two
decades, substantial evidence has been accumulating that the phonetic detail with
which complex words are realized can be highly specific to their meaning and mor-
phological status. Using electromagnetic articulography, Cho (2001) observed that
the variability in gestural coordination during the articulation of consonant clusters
was larger when the consonants were located at morpheme boundaries than when they
were within a morpheme (see also Gafos et al. (2010) for similar results in terms of
gestural overlap). Using articulography and acoustic data, Lee-Kim et al. (2012) have
found that the “darkness” of English [l] depends on its morphological status. Also us-
ing electromagnetic articulography, Tomaschek et al. (2018a) observed that morpho-
logically complex words have faster articulations in complex articulatory movements
when the whole word was more frequent. Complex words that are more frequent
also have smoother articulatory transitions between subsequent gestures (Tomaschek
et al. 2013). Tomaschek et al. (2018c) put forward the hypothesis that the motor skills
required for pronouncing a complex word benefit from practice, a proposal that dove-
tails well with other findings in kinematic studies of articulation (Tiede et al. 2011;
Tomaschek et al. 2020) and hand movements (Sosnik et al. 2004).

The acoustic duration with which complex words, or parts thereof, are realized,
has also been a highly informative variable. Drager (2011) and Podlubny et al. (2015)
observed that segment durations in the English word ‘like’ depended on its specific
grammatical function. Word frequency also emerged as one of the determinants of
the acoustic duration of homophones (Gahl 2008; Lohmann 2018). Plag et al. (2017)
and Seyfarth et al. (2018) extended the evidence from morphologically simple to
morphologically complex words by studying the acoustic duration of the supposedly
homophonous /s/ suffix of English, which realizes a range of inflectional functions
(plural on nouns, singular on verbs, genitive singular, genitive plural, as well as re-
duced auxiliaries). Even though their results seem to be contradictory, they reported
systematic differences in central tendency across the different morphosyntactic func-
tions of the /s/.

3.2 Frequency of occurrence and phonetic realization

Although the frequency with which complex words are used is well established as
a factor co-determining lexical processing time in comprehension (Frauenfelder and
Schreuder 1992; Baayen et al. 1997, 2003, 2008; Schmidtke et al. 2017, 2018), it
is still under debate what role whole-word frequency plays in speech production.
Picture naming experiments on Dutch noun singulars and plurals appear to support
the architecture of the WEAVER++ model (Levelt et al. 1999). However, the observed
pattern of results can also be understood as a paradigmatic effect (Baayen et al. 2008).
Furthermore, several other studies have observed effects of whole-word frequency in
chronometric tasks (see, e.g., Bien et al. 2005, 2011; Janssen et al. 2008).

Research on reaction times has been complemented by investigations addressing
the properties of the speech produced, with acoustic duration as the primary variable
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of interest. In this complementary line of research, frequencies are typically recast
as probabilities. Two kinds of probabilities can be distinguished: syntagmatic prob-
abilities, which condition on the preceding or following context, and paradigmatic
probabilities, which fix contexts and consider the probabilities of competing alterna-
tive realizations. These two kinds of probabilities have been found to be predictive
for a range of acoustic measures, including words’ acoustic durations and degree of
vowel centralization.

According to the Smooth Signal Redundancy Hypothesis (Aylett and Turk 2004,
2006), words that are syntagmatically more predictable are less informative and more
redundant, thus phonetically reduced (see also Cohen Priva 2015; Schulz et al. 2016;
Hall et al. 2018; Brandt et al. 2019; Le Maguer et al. 2016; Priva and Jaeger 2018;
Jaeger 2010; Malisz et al. 2018). Since high frequency words are also syntagmatically
more predictable, it follows that high frequency words are more redundant than low
frequency words. The Smooth Signal Redundancy Hypothesis argues that the pho-
netic reduction associated with syntagmatic predictability is the result of a cognitive
constraint requiring that the variance in the amount of information conveyed per unit
of time in the speech signal is minimized. According to Aylett and Turk, reduction
and enhancement are mediated by prosodic prominence. A more general account that
avoids mediation via prosody is presented by (Jaeger 2010)’s Uniform Information
Density Hypothesis (see also Frank and Jaeger 2008).

With respect to the paradigmatic dimension, a series of studies has revealed effects
that go in the opposite direction. Kuperman et al. (2007) observed that interfixes with
greater paradigmatic probability were realized with longer durations. This study for-
mulated a hypothesis, the Paradigmatic Enhancement Hypothesis (Kuperman et al.
2007). The hypothesis states that phonetic contrasts are enhanced when a word’s
probability is higher within the context of its morphological paradigm. The Paradig-
matic Enhancement Hypothesis has received further support from several other stud-
ies. Lõo et al. (2018) found longer acoustic durations of words when they are part
of a smaller inflectional paradigmatic family, i.e. when the a-priori probability of an
individual word is higher. Bell et al. (2019) reported longer durations for consonants
located at the internal word boundary of two-constituent nominal compounds when
the family size of the first noun was smaller. Enhancement under increased paradig-
matic probability and reduced paradigmatic uncertainty has also been observed for
the duration of third person singular [s] in English (Cohen 2014b), the duration of
word final [s] in English (Tomaschek et al. 2019), the duration of English stem vow-
els in regular and irregular verbs (Tucker et al. 2019), and the position of vowels in
the vowel space in Russian words (Cohen 2014a, 2015). Tucker et al. (2019) argue
that “under increased [paradigmatic] uncertainty, less energy is invested in maintain-
ing duration. Increasing duration would be disadvantageous for the speaker, as the
speaker would have to maintain for a longer time a signal that is difficult to discrimi-
nate, thus increasing uncertainty in the production process. A longer duration would
also be disadvantageous for the listener, as the listener would be confronted for a
longer period of time with an ineffective signal that fails to properly reduce the lis-
tener’s uncertainty about the message encoded in the speech signal.” (See also Sims
(2016).)

In what follows, we further pursue the question of how paradigmatic probability
co-determines speech production, by means of an experiment using electromagnetic
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articulography. We studied the production of English inflected verb forms, such as
walk, walks, walked, and walking, with the aim of clarifying whether the details of the
articulatory trajectory of the tongue when articulating the vowel is predictable from
the frequencies with which the different inflected forms are used. The Paradigmatic
Enhancement Hypothesis suggests that inflected forms that have a higher paradig-
matic probability will be articulated with less reduction. Furthermore, from the per-
spective of motor practice (Tomaschek et al. 2018c, 2020), it seems likely that artic-
ulatory skills improve with frequency of use. Thus, practice may allow articulators to
reach more extreme positions, thus enabling articulations that produce a signal that is
clearer for the listener.

4 Electromagnetic articulography experiment

We used Electromagnetic articulography to trace the trajectories of two sensors
placed on the tongue during the articulation of four different inflected word forms
(e.g., walk, walks, walked, walking) for each of 52 different verbs. Tongue movement
trajectories in the midsaggital plane were analyzed using the quantile generalized
additive model, with as hypothesis that tongue movements over time vary systemat-
ically with paradigmatic probability, with greater probability affording more skillful
articulation.

4.1 Participants

Twenty-five speakers of Canadian and American English (mean age: 29.4, sd: 8.2)
were paid to read out loud the stimuli in randomized order. Ethics approval for the
experiment was obtained from the Ethics Board of the University of Alberta, Edmon-
ton.

4.2 Materials and design

We selected 57 English verbs, and collected four inflected variants for each verb: the
first person present tense form (stem, which is identical to the infinitive), the third
person singular present tense form (stem+s), the past tense form (stem+d) and the
progressive form (stem+ing). All verb forms, apart from the progressive form, were
monosyllabic. The selected word materials comprised [i] and [A] as stem vowels, with
VC and VCC rimes. For all words with [A], the vowel was followed by the the voiced
alveolar approximant [ô]. A list of word forms is available in the supplementary ma-
terials (https://osf.io/nrjvx/).

Since word forms that were disyllabic in the stem+s and stem+d conditions (e.g.
‘pleases’) were not used in the current experiment, the number of tokens for each
stem varied. Table 1 presents the number of words in the experiment for each of the
two vowels across the four morphological classes, together with examples.

To avoid changes in articulatory patterns due to participants repeatedly pronounc-
ing a lemma more than once in the same experiment (see Shields and Balota 1991;
Bard et al. 2000; Tomaschek et al. 2020, for effects of repetition on speech produc-
tion and articulation), word lists were structured according to a Latin square design,

https://osf.io/nrjvx/
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Table 1 Number of words with [i] and [A] stem vowels, broken down by morphological condition

stem stem+d stem+s stem+ing total examples

[A] 20 15 20 20 75 arm, armed, arms, arming

[i] 37 29 32 35 133 peel, peeled, peels, peeling

Fig. 1 Sensor positions. Left
frontal illustration. Right
midsagittal cut through the
mouth

with inflectional variants of the same stem occurring in different lists. In the statisti-
cal analyses, the factor tense, with levels stem, stem+d, stem+s, and stem+ing, was
used to model potential systematic effects of a word’s inflectional form.

4.3 Recording

Recordings were made in a sound-attenuated booth at the Alberta Phonetics Labora-
tory in the Department of Linguistics, University of Alberta, Edmonton. Articulatory
movements of the tongue were recorded with an NDI wave articulograph at a sam-
pling frequency of 100 Hz. Simultaneously, the audio signal was recorded (Sampling
rate: 22.05 kHz, 16 bit) and synchronized with the articulatory recordings. To enable
correction for head movements and in order to set up a local coordinate system for
tongue movements, a reference sensor was attached to the subjects’ forehead. Before
the tongue sensors were attached, a bite plate recording was made to determine the
rotation from the local reference coordinate system defined by the magnetic emitter
to a standardized coordinate system. On the bite plate, three sensors were attached in
a triangular configuration. Tongue movements were captured by three sensors: one
slightly behind the tongue tip, one at the tongue middle and one at the tongue body
(distance between each sensor: around 2 cm). The present analysis focuses on the
tongue tip and the tongue body sensor along both the vertical and the horizontal di-
mension, which jointly define the midsaggital plain (Fig. 1).

4.4 Preprocessing

Tongue movements were corrected for head-movements in an online procedure dur-
ing recording by the NDI wave software. The recorded positions of the tongue sensors
in the midsaggital plane were centered at the midpoint of the bite plate and rotated
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Table 2 Pearson’s
product-moment correlations
between frequency measures

[i] & [A] vowel word frequency fi lemma frequency fL

lemma frequency fL 0.82

paradigmatic probability pi 0.54 0.01

in such a way that the back-front direction of the tongue was aligned to the x-axis
with more positive values towards the front of the mouth, and more positive z-values
towards the top of the oral cavity. Segment boundaries in the audio signal were de-
termined first by automatically aligning the audio signal with words’ phone-based
transcriptions by means of P2FA, a Hidden-Markov-Model-based forced aligner for
English (Yuan and Liberman 2008). Subsequently, alignments for the vowel were
manually verified and corrected where necessary.

The dependent variables in this study were the positions of the tongue tip and
tongue body sensors in the midsaggital plane. Absolute sensor positions were trans-
formed into relative distances between the sensor and its maximal vertical/horizontal
position for each sensor in each speaker. As a consequence, the z-coordinates repre-
sent the (relative) distance from the speaker’s palate. More negative values represent
stronger retraction in the horizontal dimension and stronger lowering in the vertical
dimension.

Word tokens were realized with variable durations. In order to control for differ-
ences in duration and speech rate, time was normalized to the [0, 1] interval, with 0
linked to vowel onset and 1 to vowel offset. In what follows, we refer to this normal-
ized time simply as time.

4.5 Predictors

Frequency counts for the verbs and their inflected variants were obtained from an in-
house corpus of English movie subtitles containing over 190 million words, collected
at https://www.opensubtitles.org (OpenSubtitles 2013). A verb’s lemma frequency fL

was defined as the sum of the whole word frequencies fi of its k inflected variants:

fL =
k∑

i=1

fi. (1)

For the present English verbs, k = 4. We defined the paradigmatic probability pi of
the i-th inflected variant of a verb as its relative frequency in the paradigm:

pi = fi

fL

. (2)

The correlations between the three frequency measures are listed in Table 2.
The correlation between lemma frequency and word frequency is too high (0.82)

to include both predictors in a regression model. The resulting collinearity is likely to
render the interpretation of the statistical model uncertain due to enhancement or sup-
pression (Friedman and Wall 2005; Tomaschek et al. 2018b). The correlation between

https://www.opensubtitles.org
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lemma frequency and paradigmatic probability is close to zero, but for these two pre-
dictors, a different problem arises. Frequencies typically follow a Zipfian distribution,
and in order to avoid undue effects of outliers, frequencies are log-transformed before
being entered as predictors in statistical models (as is the case in the present study).
Since log(pi) = fi

fL
= log(fi) − log(fL), a regression model with both pi and fL as

predictors reduces to a model that is linear in logfi and logfL:

y = β0 + β1 log(pi) + β2 log(fL)

= β0 + β1[log(fi) − log(fL)] + β2 log(fL)

= β0 + β1 log(fi) + [β2 − β1] log(fL).

In other words, a model including (log-transformed) paradigmatic probability and
lemma frequency is equivalent to a model with a whole-word frequency effect and
a lemma frequency effect from which the effect of the inflected variant’s frequency
has been removed. As a consequence, the interpretation of the predictors and their
link to models of lexical processing becomes less straightforward. In the light of
these considerations, we decided to fit three models, each one with one of the three
frequency measures, and to proceed with the predictor that provides the best fit. For
this model, we then also explored whether adding one of the two other frequency
measures improves the fit further (in spite of potential problems of collinearity).

We considered including acoustic duration as a covariate. However, linear mixed-
effects models regressing acoustic duration on tense, vowel, and the lexical predictors
failed to reveal significant effects of paradigmatic probability, frequency and lemma
frequency on duration (see the supplementary materials for further details). In order
to keep our regression model interpretable, we did not include acoustic duration as
covariate. Further modeling (not reported here) clarified that inclusion of duration as
predictor does not change the results reported below. We also considered fine-tuning
articulatory trajectories for the segmental context of the vowel (using factor smooths,
see Tomaschek et al. (2018c) for further details). However, this led to very high con-
curvity for the present data set. We therefore did not include segmental context as a
predictor in the model below, but a model that does so is available in the supplemen-
tary materials. Finally, we included speaker and stem as random-effect factors.

4.6 Statistical method

Initially, we attempted to fit a Gaussian generalized additive mixed model (GAMM,
Hastie and Tibshirani 1990; Wood 2006, 2011, 2013a,b). GAMM uses spline-based
smoothing functions to model nonlinear functional relations between a response and
one or more covariates. This enables the analyst to model wiggly curves as well as
wiggly (hyper)surfaces (see Wieling et al. 2016; Baayen et al. 2017, for an intro-
duction to spline smooths and their use). However, model criticism revealed that the
distribution of the residuals deviated substantially from normality and independence,
and resisted any attempts at correction to idd errors. We therefore turned to quantile
regression (Koenker 2005), which has recently been integrated with the generalized
additive model (Fasiolo et al. 2020). Quantile generalized additive mixed models
(QGAMM) provide the analyst with a distribution-free method for estimating the
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predicted values for any given quantile of the response distribution, together with
confidence intervals. In our analyses, we investigated the median, but other quantiles
can also be of theoretical interest. We made use of the qgam package for R, which
builds on the mgcv package (version 1.8-3) for R (Version 3.0.3, (Team 2018)). We
used the itsadug package (van Rij et al. 2015) (Version 2.2) for visualization of the
results.

The data points in the present study are not independent: strong temporal autocor-
relations are present in the articulatory time series. As a consequence, the model
overestimates the amount of independent information, and p-values can be anti-
conservative. This anti-conservatism appears to concern primarily the effects for the
tongue body in the [i] vowel, as indicated by a Gaussian GAMM with an AR(1)
process in the residuals (rho = 0.911). However, in this Gaussian GAMM, the artic-
ulatory trajectories are qualitatively very similar to those estimated by the QGAMM.
Autocorrelations in the residuals are often also reduced by the inclusion of by-item
factor smooths, i.e., non-linear random effects (Baayen et al. 2018a). However, for
the present data, including factor smooths results in strong concurvity, which makes
it difficult to tease apart what individual predictors contribute to the model and to
understand their theoretical significance. To maintain interpretational transparency,
we therefore did not include factor smooths. Importantly, prediction accuracy of
QGAMMs can by high even in the presence of substantial autocorrelation, as exem-
plified by the study of Fasiolo et al. (2020) of time series of electricity grid data. As
our analyses are exploratory in nature, and given the autocorrelations present in artic-
ulatory trajectories, we decided accepting smooth terms in our model as potentially
significant only when their associated p-value is less than 0.0001. In other words, we
use the QGAMMs as a tool to describe median articulatory positions, and the very
small p-values associated with most smooths (� 0.0001) suggest that the model is
detecting real signal in the noise.

The trajectories of a tongue sensor in the midsagittal plane, for a given subject and
item, can be modeled by an interaction of time by dimension (horizontal vs vertical)
by sensor (tongue body vs tongue tip), using treatment coding of factorial predictors.
To differentiate between articulatory trajectories for the two vowels ([i], [A]), a further
interaction with vowel type needs to be included. Furthermore, since effects can vary
by Tense (stem, stem+s, stem+d, stem+ing), a further interaction could be added in.
However, in order to facilitate modeling and visualization, we did not fit a model
with this immense five-way interaction. Instead, we constructed a factor, henceforth
SDV, with eight levels, one level for each of the eight combinations of Sensor by
Dimension by Vowel. We used QGAMM to fit eight wiggly curves as a function of
time, one for each of the levels of SDV. To obtain the four trajectories (for the four
combinations of sensor and vowel) as a function of time in the midsaggital plane, the
pertinent horizontal and vertical trajectories for a given sensor-vowel combination
were combined. The model formula for these curves is:

s(Time, by=SDV)

In addition, we fitted eight separate curves, now as a function of one of the lexical
predictors word frequency, lemma frequency or paradigmatic probability, with the
following specification:
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s(lexical predictor, by=SDV)

We restricted the effect of Tense to changes in the intercept by including an inter-
action of SDV and Tense. Adding in by-subject and by-base random intercepts, and
including Curves as a fixed-effect factor, we obtained the following model specifica-
tion:

Position ~ SDV + Tense + SDV:Tense +
s(Time, by=SDV) + s(lexical measure, by=SDV) +
s(Subject, bs="re") + s(Base, bs="re")

This model was fitted to the data for each of the three frequency measures: lemma
frequency, word frequency, and paradigmatic probability. A model from which the
lexical measure was excluded,

Position ~ SDV + Tense + SDV:Tense +
s(Time, by=SDV) +
s(Subject, bs="re") + s(Base, bs="re")

served as baseline for evaluating the usefulness of the lexical predictor for tongue
sensor positions.

5 Results

Model comparison of models with the lexical predictors and the baseline model, all
fitted with maximum likelihood, was performed with the compareML function from
the itsadug package. This comparison indicated that paradigmatic probability was
most successful at increasing model fit (�ML = 220.194, �edf = 16, p < 0.0001),
followed by word frequency (�ML = 205.027, �edf = 16, p < 0.0001), and at a
distance by lemma frequency (�ML = 7.835, �edf = 16, p = 0.48).

The goodness of fit of the model with paradigmatic probability can be improved
further by adding smooths to the model for word frequency (�ML = 73.690, �edf
= 16, < 0.0001) or lemma frequency (�ML = 91.366, �edf = 16, < 0.0001).1 Un-
fortunately, this results in an unacceptably high degree of concurvity in the model,
indicating that hardly any variance can be uniquely attributed to a given frequency
measure. In other words, the models with additional frequency measures are overfit-
ting the data. Since qualitatively the effect of paradigmatic probability remains the
same in these overly complex models, we have opted for reporting only the model
with paradigmatic probability. However, the supplementary materials report the more
complex models as well, as well as the models with only word frequency or lemma
frequency as (sole) predictor. Results obtained with word frequency are very simi-
lar to those obtained with paradigmatic probability (see Appendix). Table 3 presents
the summary of the parametric coefficients of the model, and Table 4 presents the
summary of the smooths in the model (which also include the random effect factors).

1To avoid the problem of the quotient rule for logarithms, we used ranked predictors. For model compar-
isons, we refitted the model with ranked paradigmatic probability.
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Table 3 Summary of parametric coefficients for the model fitted to tongue sensor movements in the
midsaggital plane, with paradigmatic probability as covariate. SDV = Sensor by Dimension by Vowel,
TT = tongue tip, TB = tongue body, ver = vertical movements, hor = horizontal movements

parametric coefficients estimate std. error t-value p-value

Intercept (TB hor [A], Tense = stem) −14.6575 0.3091 −47.4163 < 0.0001

Tense = stem+s (TB hor [A]) 1.2326 0.2116 5.8264 < 0.0001

Tense = stem+d (TB hor [A]) 0.4989 0.2452 2.0347 0.0419

Tense = stem+ing (TB hor [A]) 0.3785 0.2557 1.4802 0.1388

SDV = TT hor [i] (Tense = stem) 9.3122 0.2790 33.3766 < 0.0001

SDV = TT hor [i] : Tense = stem+s −0.9969 0.2252 −4.4260 < 0.0001

SDV = TT hor [i] : Tense = stem+d −1.1806 0.2607 −4.5293 < 0.0001

SDV = TT hor [i] : Tense = stem+ing −0.7144 0.2693 −2.6533 0.0080

SDV = TB hor [i] (Tense = stem) 10.6854 0.2795 38.2284 < 0.0001

SDV = TB hor [i] : Tense = stem+s −1.1241 0.2265 −4.9634 < 0.0001

SDV = TB hor [i] : Tense = stem+d −0.9085 0.2625 −3.4611 0.0005

SDV = TB hor [i] : Tense = stem+ing −0.6452 0.2698 −2.3911 0.0168

SDV = TT ver [i] (Tense = stem) 5.2337 0.2804 18.6637 < 0.0001

SDV = TT ver [i] : Tense = stem+s −0.8055 0.2303 −3.4982 0.0005

SDV = TT ver [i] : Tense = stem+d 0.3809 0.2644 1.4406 0.1497

SDV = TT ver [i] : Tense = stem+ing 0.7395 0.2741 2.6979 0.0070

SDV = TB ver [i] (Tense = stem) 11.7611 0.2780 42.2991 < 0.0001

SDV = TB ver [i] : Tense = stem+s −0.9430 0.2233 −4.2235 < 0.0001

SDV = TB ver [i] : Tense = stem+d −0.5270 0.2583 −2.0400 0.0413

SDV = TB ver [i] : Tense = stem+ing −0.6493 0.2662 −2.4390 0.0147

SDV = TT hor [A] (Tense = stem) −2.3130 0.2121 −10.9076 < 0.0001

SDV = TT hor [A] : Tense = stem+s 0.1184 0.2695 0.4392 0.6605

SDV = TT hor [A] : Tense = stem+d 0.2741 0.3130 0.8760 0.3811

SDV = TT hor [A] : Tense = stem+ing 0.4097 0.3274 1.2511 0.2109

SDV = TT ver [A] (Tense = stem) 3.6150 0.2327 15.5326 < 0.0001

SDV = TT ver [A] : Tense = stem+s −3.3122 0.2984 −11.0987 < 0.0001

SDV = TT ver [A] : Tense = stem+d −3.0447 0.3462 −8.7956 < 0.0001

SDV = TT ver [A] : Tense = stem+ing 0.4263 0.3562 1.1966 0.2315

SDV = TB ver [A] (Tense = stem) 5.2527 0.2260 23.2376 < 0.0001

SDV = TB ver [A] : Tense = stem+s −1.8583 0.2829 −6.5697 < 0.0001

SDV = TB ver [A] : Tense = stem+d −1.0930 0.3333 −3.2797 0.0010

SDV = TB ver [A] : Tense = stem+ing 0.0967 0.3501 0.2761 0.7825

Interpretation of the large number of coefficients in Table 3 is facilitated by vi-
sualization in Fig. 2. The left panel of Fig. 2 presents the predicted positions at the
onset of the vowel (the intercepts at time zero) of the tongue tip sensor, the right panel
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Table 4 Summary of smooth terms for the model fitted to tongue sensor movements in the midsaggital
plane during the production of [i]. The lexical predictor was paradigmatic probability. TT = tongue tip,
TB = tongue body, ver = vertical movements, hor = horizontal movements. Effective degrees of freedom
(edf) substantially greater than 1 indicate a non-linear relationship between smooth and dependent variable.
P-values smaller than 0.0001 are regarded to support significant effects

smooth terms edf ref.df F-value p-value

s(time): TT hor [i] 2.4192 2.7640 108.9699 < 0.0001

s(time): TT ver [i] 2.8749 2.9878 220.3148 < 0.0001

s(time): TB hor [i] 2.8171 2.9742 210.4846 < 0.0001

s(time): TB ver [i] 2.9284 2.9960 283.4926 < 0.0001

s(time): TT hor [A] 2.9147 2.9943 480.2161 < 0.0001

s(time): TT ver [A] 2.9371 2.9969 583.1954 < 0.0001

s(time): TB hor [A] 2.7648 2.9576 271.6577 < 0.0001

s(time): TB ver [A] 2.8765 2.9880 338.2444 < 0.0001

s(paradigmatic probability): TT hor [i] 1.6384 1.8681 10.8501 0.0021

s(paradigmatic probability): TT ver [i] 1.9775 1.9994 45.6623 < 0.0001

s(paradigmatic probability): TB hor [i] 1.4258 1.6689 6.5057 0.0152

s(paradigmatic probability): TB ver [i] 1.9420 1.9962 20.4445 < 0.0001

s(paradigmatic probability): TT hor [A] 1.5162 1.7654 1.9412 0.2224

s(paradigmatic probability): TT ver [A] 1.9771 1.9994 107.8204 < 0.0001

s(paradigmatic probability): TB hor [A] 1.9035 1.9905 23.0086 < 0.0001

s(paradigmatic probability): TB ver [A] 1.9712 1.9991 48.5218 < 0.0001

s(participant) 23.9046 24.0000 12306.7123 < 0.0001

s(base) 53.1517 54.0000 7304.1250 < 0.0001

the intercepts for the tongue body sensor. Triangles represent intercepts for [i], filled
circles intercepts for [A]. Individual points represent the relative onset positions of the
tongue tip and tongue body as affected by tense. The relative position between [i] and
[A] has been reduced to increase the discriminability between the points representing
the effect of tense.2

Table 4 presents the summary of the smooth terms of the model. The last block
of this table concerns the by-subject and by-base random intercepts, both are well

2We observe shifts in the intercept of the sensor positions between the different conditions and the stem
condition (represented by “ø”). Anticipating [IN] and [d], the tongue tip is raised and retracted during [i]
production. Anticipating [s], the tongue is shifted to the front and raised. The same effect can be observed
when the tongue body anticipates [s] during [i] production. While the tongue body is also retracted, when
anticipating [IN] and [d], it is a little bit lowered before [IN]. During [A] production, the tongue tip is
systematically fronted anticipating all exponents. It is lower anticipating [s] and [d] and higher anticipating
[IN]. The same pattern can be observed for the tongue body, even though the differences between the stem
condition and the suffixed condition are smaller than in the tongue tip. One potential reason why we
observe lower positions of the tongue before [s] and [d] is that these consonants were articulated with the
tongue blade rather than the tongue tip. When these consonants are articulated by the tongue blade, then
the tongue tip gets fronted and lowered due to the raising of the blade.
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Fig. 2 Position of the tongue tip (left) and tongue body (right) sensor at the onset of the vowel, for [i]
(triangles) and [A] (disks) by morphological condition (ø: stem, s: third person singular, d: past tense, ing:
gerund). Axis are in millimeters. The relative position between [i] and [A] has been reduced to increase
the discriminability of the tense effects. The opening of the oral cavity is to the left. Random effects were
excluded for prediction

supported. As they are not of theoretical interest, we will not discuss these random
effects further. The first block of smooths in Table 4 specifies how position varies
over time as a function of SDV (the factor defining the eight combinations of sensor,
dimension, and vowel). These smooths lay down the foundation for the trajectories in
the midsaggital plane shown in Fig. 3. The precise shape of these trajectories varies
with paradigmatic probability. The second block of Table 4 evaluates the effect of
paradigmatic probability for the 8 levels of SDV. In 5 out of 8 cases, there is good
reason to assume that indeed paradigmatic probability is co-determining articulation.
The trajectories shown in Fig. 3 present the joint effect of the smooths for time and
paradigmatic probability. Smooths are shown for each of the four vowel and sensor
combinations, with horizontal position on the X-axis and vertical position on the Y-
axis. Time is indicated by means of line width, with greater line width indicating
earlier points in time. The modulating effect of paradigmatic probability is shown
by graphing the curve at five percentiles: the 15th, 32.5th, 50th, 67.5th, and 85th
percentile of paradigmatic probability. Darker shades of gray represent higher values
of paradigmatic probability.

First consider the upper panels of Fig. 3, which display the articulatory trajecto-
ries for the [i] vowel. The trajectories for the tongue tip sensor (left) are U-shaped,
whereas those for the tongue body sensor are inverse U-shaped. This suggests that
we are observing anti-phasic coupled motion during [i]: when the tongue tip moves
down, at the same time, the tongue body moves up. In other words, the movement
pattern registered here is truly tied to the tongue, and not to jaw movement.

During the articulation of the [i] vowel, the tongue tip moves further down into the
mouth as paradigmatic probability increases. Furthermore, the tongue tip is slightly
retracted, whereas the tongue body sensor is fronted slightly (an effect that yielded
a relatively high p = 0.0152). This raises the question of how to understand this fre-
quency effect. We first observe that producing an [i] vowel requires finding a good
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Fig. 3 Articulatory trajectories in the midsaggital plane of the tongue tip sensor (left panels) and the
tongue body sensor (right panels) sensors during the articulation of the vowels [i] (top row) and [A]
(bottom row). The x-axis represents the distance to the horizontal reference point near the lips, the y-axis
represents the distance to the palate. The opening of the oral cavity is to the left. Line width represents time,
with greater line width indicating earlier points in time. The 5 curves in a given panel represent quantiles
of paradigmatic probability, here, darker shades of gray represent larger quantiles. Random effects were
excluded for prediction

balance between staying away of the [j] semi-vowel, which requires the tongue to
move closer to the palate compared to [i]. In spite of the durational cue for [i], realiz-
ing the [i] still requires good resonance while staying away from the lower articula-
tory positions which give rise to the [I] vowel. Given this balancing act, there are two
ways in which the lowering effect of paradigmatic probability can be understood. The
first interpretation is consistent with the Smooth Signal Reduction Hypothesis: with
increasing (paradigmatic) probability, the [i] vowel is realized with more central-
ization. The second interpretation is consistent with the Paradigmatic Enhancement
Hypothesis (and the practice hypothesis): words with small paradigmatic probabil-
ity are realized with too narrow a vocal tract, resulting in too little resonance; as
experience with articulating the word increases, [i] vowels are realized with less con-
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striction and more vocalic resonance. The first interpretation zooms in on movement
towards the schwa, the second interpretation focuses on movement away from a pos-
sible constriction. The second interpretation has perhaps slightly better credentials:
paradigmatic probability outperforms whole-word frequency as a predictor of articu-
lation, and paradigmatic effects invariably lead to strengthening of the signal and not
weakening. If the first interpretation is correct, then the prediction follows that for the
low [A] vowel, we should observe raising towards the schwa.

The lower panels of Fig. 3 show that this prediction of the Smooth Signal Re-
dundancy Hypothesis for the articulation of the low vowel [A] is incorrect. The most
parsimonious interpretation of the effect of paradigmatic probability therefore is that
what we are witnessing is the improvement of motor skills with practice. It is also
noteworthy that the tongue tip and tongue body sensors are not showing anti-phasic
movements. This suggests that it is not so much the tongue shape that is being mod-
ulated during articulation, but rather that we are observing the effect of the lowering
and raising of the jaw.

6 General discussion

In this study, we reviewed theories of word structure in linguistics and models of
lexical processing in psychology. In linguistics, theories of word structure attempt
to offer a parsimonious account of the word structures that are possible in a given
language.

Most researchers currently adopt some form of realizational morphology, which
works with sets of inflectional and derivational features that have to be expressed
in combinations of stems and exponents. In this approach, there is no need to list
regular complex words, as their forms can be produced on the fly from rules and/or
inheritance hierarchies.

Many computational models for word production in psychology have adopted
some form of realizational morphology. In addition they have adopted the postu-
late that because rules can assemble complex words, complex words do not have
representations of their own in lexical memory. Whereas frequency effects observed
for complex words across many comprehension studies (see, e.g., Baayen et al. 1997;
Giraudo and Orihuela 2015; Schmidtke et al. 2017) have been interpreted as evidence
for complex words having their own representation in lexical memory, the evidence
for frequency effects in chronometric studies is not as clear (see, e.g. Levelt et al.
1999; Janssen et al. 2008). However, studies of the acoustic signal, i.e., of the speech
produced, and of the articulatory process itself, provide evidence that complex words
are more than simple combinations of parts (see, e.g., Baayen et al. 2019; Tomaschek
et al. 2019, 2018c). The subtle meanings of complex words, including their pragmatic
and social functions, have far-reaching consequences for phonetic detail (Hawkins
2003; Drager 2011; Podlubny et al. 2015). To our knowledge, none of the realiza-
tional computational models that have been proposed in the literature have been able
to properly predict these findings.

The present study adds to the growing body of research on the phonetics of com-
plex words by addressing the question of whether the frequency with which regu-
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lar inflected words are used co-determines how they are articulated. Two comple-
mentary theories make opposite predictions. One theory, under the banner of the
Smooth Signal Redundancy Hypothesis (Aylett and Turk 2004) and the Uniform In-
formation Density Hypothesis (Frank and Jaeger 2008; Jaeger 2010), predicts that
inflected words with higher syntagmatic probability should be produced with re-
duced articulatory trajectories, as in context higher frequency words are informa-
tionally more redundant. The other theory, under the banner of the Paradigmatic
Enhancement Hypothesis, predicts that words with higher paradigmatic probability
should be produced with enhanced articulatory trajectories, the idea here being that
words that are more probable within a paradigm can be articulated with more con-
fidence (Kuperman et al. 2007). Since such words have had more extensive motor
practice, the articulatory gestures for these words can be executed with enhanced
kinematic skills (Tomaschek et al. 2018c). Enhanced kinematic skills result from
greater practice and allow speakers to achieve more extreme articulatory positions,
in addition to smoother gestural transitions (Tiede et al. 2011), faster articulatory ve-
locity (Tomaschek et al. 2018a) and greater articulatory precision (Tomaschek et al.
2020).

Using electromagnetic articulography to study articulatory trajectories in the mid-
saggital plain for English regular inflected verbs, the present study was able to docu-
ment clear frequency effects. For verbs with [i] as stem vowel, the tongue tip moves
down more and further away from the palate as the paradigmatic probability of the
word form increases. For verbs with [A] as stem vowel, the jaw moves further down
for words with higher paradigmatic probability. The enhanced articulation for the
[A] straightforwardly contradicts the Smooth Signal Redundancy Hypothesis. The in-
terpretation of the lowering of the tongue for verbs with [i] as stem vowel can be
construed as supporting the Smooth Signal Redundancy Hypothesis, as it could sig-
nal a form of reduction towards [@]. However, it can also be seen as improved motor
control that avoids a constriction and results in a resonant [i]. This second interpre-
tation is supported by the finding that paradigmatic probability is a better predictor
than word frequency, in combination with the finding that it is paradigmatic measures
that give rise to strengthening and not syntagmatic probabilities or isolated word fre-
quencies (see, e.g., Lõo et al. 2018; Bell et al. 2019; Cohen 2014b; Kuperman et al.
2007; Tucker et al. 2019; Tomaschek et al. 2019; Cohen 2014a, 2015; Sims 2016).
The interpretation of the lowering of the [i] as reflecting articulatory optimization
also dovetails well with the optimization visible for the [A] vowel. Importantly, ef-
fects of enhancement of acoustic durations observed in speech corpora (Tucker et al.
2019; Tomaschek et al. 2019) suggest that the present effects of enhancement are not
restricted to the laboratory setting.

The present results point to a gap in our current understanding of the relationship
between probability and performance in speech. Whereas it seems that syntagmatic
probability leads to shortening and reduction, it also seems that paradigmatic proba-
bility gives rise to lengthening and enhancement. How are these seemingly obvious
findings to be reconciled? Is there an underlying principle that can unify the oppo-
site predictions of the Smooth Signal Redundancy Hypothesis and the Paradigmatic
Enhancement Hypothesis?
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Shortening and reduction of higher frequency words has been explained in vari-
ous ways. According to Bell et al. (2009), Gahl (2008), Buz and Jaeger (2016), higher
frequency words are more readily available in the mental lexicon, allowing for faster
timing of cognitive preparation processes, which in turn are assumed to give rise to
shorter acoustic durations and more reduction. The number of phonological neigh-
bors has also been found to be an important predictor for the modulation of phonetic
detail; most studies report enhancement effects in relation to phonological neighbor-
hood density; i.e. words are articulated longer and with more peripheral vowels when
there is larger competition with phonologically similar words (Wright 2004; Munson
2001; Scarborough 2003; Buz and Jaeger 2016; Fricke et al. 2016) (for a contradic-
tory finding see (Gahl et al. 2012)). Minimization of effort (Zipf 1949; Lindblom
1990) and smoothing informativity of the signal in time (Aylett and Turk 2004, 2006)
provide further interesting perspectives on the negative correlation of frequency with
duration and signal richness.

However, there is yet another perspective that can be added to this list. Higher
frequency words tend to have more meanings (Köhler 1986), they appear in more
diverse contexts (Adelman et al. 2006; Linke and Ramscar 2020), and they are found
in more word n-grams.3 From a Discriminative Learning perspective (Ramscar et al.
2010, 2013b; Ramscar and Yarlett 2007), the words with which a given word co-
occurs in word n-grams constitute cues that compete during learning. Since higher
frequency words occur with more (contextual) cues, higher-frequency words are po-
tentially less learnable than lower-frequency words. Furthermore, it is more likely
that for higher-frequency words multiple meanings are competing for expression in
the same form (see Chuang et al. 2020, for the frailty induced by homophones in
multilingual learning). Whereas their rich syntagmatic diversity has adverse conse-
quences for the learning of higher-frequency words, a higher paradigmatic probability
is an indicator of reduced competition from paradigmatic competitors, and hence of
increased learnability.

From this learning perspective, the Smooth Signal Redundancy Hypothesis and the
Paradigmatic Enhancement Hypothesis are describing exactly the same phenomenon,
only from different points of view. Higher word frequency implies greater competi-
tion of contextual cues, but a higher paradigmatic probability implies reduced compe-
tition from paradigmatic competitors. The unifying theme is that greater learnability
is associated with longer durations and more skillful articulation, whereas reduced
learnability comes with decreasing acoustic durations and more centralized and less
effortful realizations. Thus, when learnability tends towards zero, the rule holds that
the unlearnable cannot have any acoustic realization: “Wovon man nicht sprechen
kann, darüber muss man schweigen”4 (Wittgenstein 1922). Which leaves us with the
question and an area for future research, how do we best quantify learnability and
apply it to our models of speech production?

From our perspective, proposals such as Discriminative Learning (Ramscar et al.
2010) and the Discriminative Lexicon model (Baayen et al. 2018b) are interesting

3For instance, the correlation between Celex word form unigram frequency and the number of 4-grams in
the google-1T n-gram frequency lists in which the word forms occur is 0.66 (p < 0.0001).
4Whereof one cannot speak, thereof one must be silent.



Paradigmatic enhancement of stem vowels. . .

and fruitful attempts in the right direction, as they do not work with lexical represen-
tations for form and meaning that are stored in some list-like dictionary. Rather, the
networks are the linguistic memory. A word’s meaning is generated on the fly from
visual or acoustic input, and a word’s form is generated on the fly given the message
the speaker is seeking to encode. Baayen et al. (2018b) and Chuang et al. (2020)
show that algorithmically, it is possible to understand and produce morphologically
complex words without requiring theoretical constructs such as stems, affixes, and
exponents.

We conclude with the observation that the robust frequency effects observed in
the articulation of complex words caution against projecting parsimony in linguistic
analysis onto the mental lexicon. The present findings are congruent with construc-
tion morphology (Booij 2010), the latest developments in Word and Paradigm Mor-
phology (Blevins et al. 2015; Blevins 2016) which heavily rely on discriminative ap-
proaches, and with usage-based approaches to language and language processing (see
e.g. Bybee 2010), albeit they challenge the implicit assumptions regarding composi-
tionality embodied in many of the latter approaches (see Ramscar and Port 2016, for
a critical review of compositional approaches). An important challenge for both lin-
guistic morphology and cognitive modeling is to further develop our theories so that
they generate precise and falsifiable quantitative predictions for articulatory trajecto-
ries, along the work by Hickok (2012, 2014). We anticipate that in order to achieve
this goal, it will be necessary to investigate how lexical, inflectional, derivational, and
pragmatic meanings are realized in the phonetics of complex words, without interven-
ing discrete units set up in such a way that they render form and meaning invisible to
each other.
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Fig. 4 Articulatory trajectories in the midsaggital plane of two tongue sensors during the articulation of
the stem vowel [i] (top row) and [A] (bottom row) of English verbs. The left column visualizes these tra-
jectories for the tongue tip sensor, the right column for the tongue body movements. The x-axis represents
the distance to the horizontal reference point, the y-axis represents the distance to the palate. The opening
of the oral cavity is to the left. The thickness of the trajectories represents position across time, with the
thick end representing the onset of the vowel and the thin end representing the offset of the vowel. Shading
represents the deciles of whole-word frequency, with black = 0.85 decile and light grey = 0.15 decile.
Random effects were excluded for prediction

Appendix: Summaries and plots for whole-word frequency

Figure 4 illustrates the effect of whole-word frequency on articulatory trajectories.
The summary of parametric coefficient is presented in Table 5. Table 6 summarizes
the non-linear effects.
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Table 5 Summary of parametric coefficients for the model fitted to tongue sensor movements in the
midsaggital plane. The lexical predictor was whole-word frequency. SDV = Sensor by Dimension by
Vowel, TT = tongue tip, TB = tongue body, ver = vertical movements, hor = horizontal movements

parametric coefficients estimate std. error t-value p-value

(Intercept) −14.7510 0.2899 −50.8754 < 0.0001

TB hor [i] 10.8316 0.2569 42.1635 < 0.0001

TB ver [A] 4.6915 0.1565 29.9768 < 0.0001

TB ver [i] 11.8961 0.2555 46.5669 < 0.0001

TT hor [A] −2.1626 0.1531 −14.1206 < 0.0001

TT hor [i] 9.3206 0.2563 36.3727 < 0.0001

TT ver [A] 2.7278 0.1622 16.8184 < 0.0001

TT ver [i] 5.3013 0.2574 20.5994 < 0.0001

Tense = stem+d 0.6210 0.1804 3.4427 0.0006

Tense = stem+s 1.2803 0.1583 8.0893 < 0.0001

Tense = stem+ing 0.4334 0.1861 2.3295 0.0198

SDV = TB hor [i] : Tense = stem+d −1.0616 0.1998 −5.3134 < 0.0001

SDV = TB ver [A] : Tense = stem+d −0.1744 0.2298 −0.7590 0.4479

SDV = TB ver [i] : Tense = stem+d −0.6762 0.1948 −3.4710 0.0005

SDV = TT hor [A] : Tense = stem+d 0.0962 0.2252 0.4269 0.6694

SDV = TT hor [i] : Tense = stem+d −1.1716 0.1976 −5.9292 < 0.0001

SDV = TT ver [A] : Tense = stem+d −1.6940 0.2430 −6.9721 < 0.0001

SDV = TT ver [i] : Tense = stem+d 0.3798 0.2019 1.8810 0.0600

SDV = TB hor [i] : Tense = stem+s −1.2253 0.1752 −6.9938 < 0.0001

SDV = TB ver [A] : Tense = stem+s −1.0828 0.2001 −5.4103 < 0.0001

SDV = TB ver [i] : Tense = stem+s −0.9958 0.1712 −5.8162 < 0.0001

SDV = TT hor [A] : Tense = stem+s −0.0176 0.2004 −0.0877 0.9301

SDV = TT hor [i] : Tense = stem+s −0.9756 0.1735 −5.6243 < 0.0001

SDV = TT ver [A] : Tense = stem+s −2.1082 0.2126 −9.9184 < 0.0001

SDV = TT ver [i] : Tense = stem+s −0.6590 0.1783 −3.6951 0.0002

SDV = TB hor [i] : Tense = stem+ing −0.8314 0.2045 −4.0656 < 0.0001

SDV = TB ver [A] : Tense = stem+ing 1.1117 0.2390 4.6519 < 0.0001

SDV = TB ver [i] : Tense = stem+ing −0.8253 0.1997 −4.1322 < 0.0001

SDV = TT hor [A] : Tense = stem+ing 0.2608 0.2351 1.1090 0.2674

SDV = TT hor [i] : Tense = stem+ing −0.6632 0.2026 −3.2738 0.0011

SDV = TT ver [A] : Tense = stem+ing 1.9943 0.2407 8.2869 < 0.0001

SDV = TT ver [i] : Tense = stem+ing 0.5748 0.2098 2.7391 0.0062
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Table 6 Summary of smooth terms for the model fitted to tongue sensor movements in the midsaggital
plane during the production of [i]. The lexical predictor was whole-word frequency. TT = tongue tip,
TB = tongue body, ver = vertical movements, hor = horizontal movements. Effective degrees of freedom
(edf) substantially greater than 1 indicate a non-linear relationship between smooth and dependent variable

smooth terms edf ref.df F-value p-value

s(time): TB hor [A] 2.7721 2.9602 281.3910 < 0.0001

s(time): TB hor [i] 2.8188 2.9746 207.3173 < 0.0001

s(time): TB ver [A] 2.8805 2.9888 347.3624 < 0.0001

s(time): TB ver [i] 2.9278 2.9959 281.6231 < 0.0001

s(time): TT hor [A] 2.9160 2.9945 485.9599 < 0.0001

s(time): TT hor [i] 2.4159 2.7617 108.0798 < 0.0001

s(time): TT ver [A] 2.9387 2.9970 611.4520 < 0.0001

s(time): TT ver [i] 2.8749 2.9878 217.0389 < 0.0001

s(word frequency): TB hor [A] 1.8829 1.9850 6.9371 0.0261

s(word frequency): TB hor [i] 1.9379 1.9958 18.6328 0.0001

s(word frequency): TB ver [A] 1.9361 1.9949 36.5984 < 0.0001

s(word frequency): TB ver [i] 1.9468 1.9968 19.0345 0.0001

s(word frequency): TT hor [A] 1.7604 1.9405 2.9305 0.2095

s(word frequency): TT hor [i] 1.0011 1.0022 0.0986 0.7544

s(word frequency): TT ver [A] 1.7777 1.9489 23.4363 < 0.0001

s(word frequency): TT ver [i] 1.9902 1.9998 105.0520 < 0.0001

s(Participant) 23.9066 24.0000 13106.4578 < 0.0001

s(Base) 53.0458 54.0000 7971.4828 < 0.0001
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