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Abstract

Many studies report that frequent words have shorter acoustic durations,

more co-articulation and reduced articulatory targets. This study calls at-

tention to a factor ignored in discussions on the relation between lexical

frequency and the phonetic detail, namely, that motor skills improve with

experience. Since frequency of use is a measure of experience, it follows that

frequent words should show increased articulatory proficiency. We used elec-

tromagnetic articulography to test this prediction against German inflected

verbs with [a] stem vowel, focusing on vertical tongue movements. Medium-

frequency words with a [t]-exponent revealed U-shaped trajectories that were

more shallow and had a higher deflection, reflecting more co-articulation and

reduced articulatory targets. Words with the [n]-exponent showed move-

ments that varied with tongue region. Tongue tip sensors revealed U-shaped

curves positioned higher in the mouth for frequent words, without being

more shallow, however. Sensors further back on the tongue showed deeper

and more long-lasting downwards trajectories infrequent words, in combi-

nation with stronger co-articulation. These results challenge the hypothe-

sis that higher frequency of use necessarily comes with more co-articulation

and more articulatory reduction. We argue that the observed patterns are

best understood as arising from the opposing pressures of the communicative

forces of predictability and discriminability.

Index Terms: electromagnetic articulography, frequency of use, quantile

regression, generalized additive models, co-articulation
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1 Introduction

How words are realized in speech varies substantially. A survey of English

spontaneous conversations (Johnson 2004) indicates that some 5% of words

are spoken with one syllable less than the citation form, and that roughly

over 20% of words miss at least one phone. Several factors have been iden-

tified that co-determine the details of words’ forms. One such factor is au-

dience design. Speakers may articulate words more carefully when speaking

to a large audience or under noisy conditions, but in conversations with

familiar interlocutors, they may hypo-articulate (Lindblom 1990). On the

cline from hyper-articulation to hypo-articulation, words tend to be realized

with shorter durations, vowels are more centralized, articulatory gestures

overlap to a greater extent, and segments as well as full syllables can be

dropped (Moon and Lindblom 1989; Lindblom 1990; Junqua 1993; Browman

and Goldstein 1986; Browman and Goldstein 1989; Liberman and Mattingly

1985).

A second factor influencing word form is frequency of use. High fre-

quency words typically have fewer segments (Zipf 1935; Zipf 1949), but they

also have shorter acoustic durations when other factors such as number of

segments and syllables are controlled for (Bell et al. 2009; Gahl 2008). Fre-

quency of occurrence can be understood as a de-contextualized measure of

lexical probability. Probability measures conditioned on a word’s context,

such as the probability of the following word (Bell et al. 2009) or syntac-

tic probabilities (Gahl and Garnsey 2004; Tily et al. 2009) have been found

to explain additional variance in word durations over and above frequency.

Several functional explanations have been forwarded for the negative corre-

lation of frequency and length. For example, Zipf (1949) pointed out that

longer words require more articulatory effort (see also Lebedev, Tsui, and
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Van Gelder 2001, for hand movements), and that a general biological con-

straint to reduce the costs of speaking will over time drive frequent words to

become shorter.

According to the smooth signal redundancy hypothesis (Aylett and Turk

2004), language production is affected by a preference to distribute informa-

tion uniformly across the linguistic signal. As high probability meanings are

less informative, the complexity of the acoustic signal encoding these mean-

ings has to be reduced in order to maintain a uniform flow of information

per time unit. From the perspective of audience design, speakers have been

argued to articulate rare words more carefully in order to ensure intelligibil-

ity of words that listeners would otherwise find hard to understand (Galati

and Brennan 2010).

A third factor that has been put forward which effects word duration is

lexical retrieval. According to Bell et al. (2009), less frequent words are real-

ized with longer durations as a consequence of having to maintain synchrony

between higher level planning and articulation. Concretely, for rare words,

the phonological word becomes available later in time; for frequent of words,

it is available earlier. Varying the duration of higher vs. rare words then

contributes to a smoother flow of speech.

The terminology in use for describing shorter variants — articulatory

undershoot, hypo-articulation, reduction — reflects the normative status ac-

corded to the citation form found in dictionaries and represented in alpha-

betic writing systems. This seemingly negative evaluation does not do justice

to the rich communicative values of the shorter forms (see Hawkins 2003, for

discussion). Furthermore, even though especially highly reduced forms are

often unintelligible in isolation, in the proper context they are fully functional

(Arnold et al. 2017; Ernestus, Baayen, and Schreuder 2002).
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The goal of the present study is to call attention to a fourth factor that

co-determines how words are articulated, namely, the increase in skilled ex-

ecution of articulatory gestures with experience. The three factors discussed

above paint a picture of shorter forms as forms that are impoverished, that

are less well discriminated from other forms, that convey less information,

and that are more redundant. In what follows, we show, on the basis of

results obtained with electromagnetic articulography for German inflected

verbs, that high-frequency forms can maintain optimal articulatory targets

in combination with strong co-articulation. Before introducing our exper-

iment, we first provide an introduction to some relevant results in related

domain of inquiry, in hand movements. We conclude with a discussion of our

findings and their implications.

2 Kinematic proficiency in hand movements

For a fixed proficiency level, consider the time required for a movement, t, the

distance the movement needs to cover, d, and the width of the targeted end-

point w. A greater width allows for a greater variety of endpoint positions,

and hence is a measure of the desired movement accuracy. Experimentally,

movement precision is typically gauged by the magnitude of the error be-

tween the executed trajectory and the optimal trajectory as well as by the

magnitude of the error between the endpoint of the movement and its op-

timal target. According to Fitts’ law (Fitts 1954; Wright and Meyer 1983;

Bertucco and Cesari 2010),

t = a+ b log(2d/w). (1)
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Although the linearity assumption underlying (1) is a simplification (Langolf,

Chaffin, and Foulke 1976), the linear form clarifies that decreasing movement

time t for a fixed distance d goes hand in hand with an increase in variability

w. Also, movements towards a target that are executed at a speed that ex-

ceeds the current level of proficiency will be less accurate. When the level of

proficiency increases, trajectories become less variable for fixed t and d (Dar-

ling, Cole, and Abbs 1988; Georgopoulos, Kalaska, and Massey 1981; Platz,

Brown, and Marsden 1998; Madison et al. 2013). Furthermore, for fixed

w and d, movement time t decreases with proficiency (Raeder, Fernandez-

Fernandez, and Ferrauti 2015; Platz, Brown, and Marsden 1998). Further-

more, practice is associated with smoother transitions between two succes-

sive gestures, and upcoming gestures are anticipated earlier. As a result,

the overal time required for executing a movement is reduced (Sosnik et al.

2004).

To make this more concrete, consider someone learning to play the violin.

With increasing practice, the violin player will be able to perform a more

demanding showpiece with a speed that better approximates the fast tempo

envisioned by the composer. At the same time, as learning proceeds, the

quality of execution becomes higher, and less variable. Movements, such

as those required for the bow, becomes more economical with a reduction

in the distance travelled by the hand. The crucial point here is that at a

given stage of learning, greater speed, exceeding the optimal speed for the

given level of proficiency, and hence shorter durations, necessarily go hand in

hand with reduced, more variable, and less accurate movements. However,

with practice, greater speed can be realized while maintaining accuracy and

reducing variability.
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3 Kinematic proficiency in articulation

Like playing the violin, articulation is a complex motor skill that takes years

of practice to master. A word’s frequency of use is an index of the amount

of training a speaker has received for properly coordinating the movements

of tongue, jaw, lips, lungs, velum, and larynx during articulation. Given

the above simple principles of kinematics, we can expect the articulatory

record to show that with increasing practice, i.e., with more frequent use,

articulatory gestures of words become less variable, more complex articula-

tory gestures can be executed without requiring slower execution, and that

upcoming gestures will be anticipated earlier, without lowering standards for

articulatory targets.

To avoid misunderstanding, we do not claim that how words are artic-

ulated is determined only by articulatory proficiency. As discussed above,

audience design, probability, and lexical retrieval are forces that co-determine

articulation and may exert an influence on articulation opposite to that pre-

dicted from increasing articulatory proficiency. Of course, this raises the

question of whether the consequences of learning for articulation are at all

detectable at the level of individual words.

Several previous studies have addressed this question. Using electromag-

netic articulography, Tiede et al. (2011) were able to show that repetition

of novel sequences of common syllables leads to a reduction of the distances

travelled by the articulators as well as to increased gestural overlap, result-

ing in overall shorter words. Goffman et al. (2008) compared the speech

of children with the speech of adults and observed reduced temporal varia-

tion during anticipatory co-articulation for adults. There is some evidence

that over the lifetime, as experience accumulates, the vowel space expands

(Baayen, Tomaschek, et al. 2017; Gahl and Baayen 2017), allowing improved
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discrimination of an increasingly complex vocabulary (Keuleers et al. 2015;

Ramscar et al. 2014). These findings suggest that learning may indeed play

a role in articulation.

The next section presents an experiment we carried out with electro-

magnetic articulography (henceforth EMA) that was designed to clarify the

consequences of experience for the articulation of inflected words. For this,

we reanalyze the data from (Tomaschek, Tucker, et al. 2014). Given the

literature summarized above,

we investigated how kinematic practice, parameterized by a word’s fre-

quency of occurrence, shapes on the one hand the target of articulation and

on the other hand balances against anticipatory coarticulation of inflectional

exponents (Öhman 1966; Magen 1997). Data and scripts for the analyses

can be downloaded from https://osf.io/snuqd/.

4 Methods

4.1 Participants

Seventeen participants (9 female, 8 male; mean age: 26, sd: 3) took part

in the experiment. They were undergraduate students at the University of

Tübingen, all native speakers of German, with no known language impair-

ments. They were either paid 10 Euro for their participation, or received

course credit.

4.2 Stimuli

Participants were asked to read out loud inflected forms of twenty-seven

German verbs. All verbs were presented in a context (sie . . . ) requiring a
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realization that in its canonical form is disyllabic (e.g., sie zahlen [zi:tsa:l@n]).

Nine verbs were also presented in a context eliciting a monosyllabic form (ihr

zahlt [i:5ts:alt]). The verbs were selected to cover a wide range of frequencies

of occurrence, extracted from the SDEWAC corpus (Faaß and Eckart 2013;

Shaoul and Tomaschek 2013).

Log-transformed frequency of occurrence was not a significant predictor

of the acoustic durations of the word stimuli (β = 0.0068, s.e. = 0.0035, t =

1.954, p = 0.0508), and was also not predictive for the acoustic duration of

the stem vowel (β = 0.0006, s.e. = 0.0006, t = 0.982, p = 0.326) in mixed

models with random intercepts for subject and word.

4.3 Recording

Recordings took place in a sound proof booth at the Department of Lin-

guistics of the University of Tübingen. Participants were instructed to read

out loud stimuli presented to them on a computer screen. Each participant

produced two tokens for each verb, one monosyllabic and one disyllabic. The

order of the stimuli was randomized for each individual participant, and di-

vided into three parts. Each part was presented first in a slow (inter-stimulus

interval: 600 ms; presentation-time: 800 ms) and then in a fast speaking con-

dition (inter-stimulus interval: 300 ms; presentation-time: 450 ms). There

were small self-timed breaks between the blocks of 1 to 2 minutes. During

these breaks, we made sure that sensors were still properly attached, and

reattached them if required. In what follows, we discuss only the fast speak-

ing rate.

Articulatory movements of the tongue were recorded with the NDI wave

articulograph at a sampling frequency of 100 Hz. Simultaneously, the audio
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signal was recorded (Sampling rate: 22.05 kHz, 16bit) and synchronized with

the articulatory recordings. To correct for head movements and to define a

local coordinate system, a reference sensor was attached to the subject’s

forehead. Before the tongue sensors were attached, a recording was made to

determine the rotation from the local reference to a standardized coordinate

system. The standardized coordinate system was defined by a bite plate

to which three sensors in a triangular configuration were attached. Tongue

movements were captured by three sensors: one slightly behind the tongue

tip (TT), one at the tongue middle (TM) and one at the tongue body (TB;

distance between each sensor: around 2cm).

4.4 Preprocessing

The recorded positions of the tongue sensors were centered at the midpoint

of the bite plate and rotated in such a way that the front-back direction of

the tongue was aligned to the x-axis, with more positive values towards the

front of the mouth, and more positive z-values towards the top of the oral

cavity. To determine segment boundaries, the audio signal was automatically

aligned with phonetic transcriptions by means of a Hidden-Markov-Model-

based forced aligner for German (Rapp 1995). Vowel alignments were man-

ually verified and corrected where necessary. The analyses of the movement

trajectories of the three tongue sensors were restricted to the period of time

during which the stem vowel of the verbs was articulated.

4.5 Statistical analysis

We used quantile GAMs as implemented in the R package qgam, available

at https://github.com/mfasiolo/qgam, to investigate how the positions

of the tongue sensors changed over time, and how these articulatory trajec-
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tories were modified by predictors such as frequency of use and inflectional

exponent. Quantile GAMs (Fasiolo et al. 2017) integrate quantile regres-

sion (Koenker 2005) with the generalized additive model (GAM, Hastie and

Tibshirani 1990; Wood 2006; Wood 2011; Wood 2013b; Wood 2013a).

GAMs provide spline-based smoothing functions for modeling nonlinear

functional relations between a response and one or more covariates, thereby

enabling the analyst to model wiggly curves as well as wiggly (hyper)surfaces.

Wiggly curves were fitted with thin plate regression splines, and interac-

tions of covariates with time were modeled with tensor product smooths (see

Baayen, Vasishth, et al. 2017, for an introduction to spline smooths). Quan-

tile GAMs (henceforth QGAMs) implement a distribution-free method for

estimating the predicted values of a given quantile of the response distri-

bution, together with confidence intervals. In our analyses, we investigated

the median, but other quantiles can also be of theoretical interest (see, e.g.,

Schmidtke, Matsuki, and Kuperman 2017). The qgam package builds on the

mgcv package (version 1.8-5) for R (Version 3.0.2, (R Core Team 2014)). We

used the itsadug package (J. van Rij et al. 2015) (Version 2.2) for visualiza-

tion.

The choice for modeling articulatory trajectories with quantile GAMs

was motivated by the strong autocorrelations present in the residuals of the

Gaussian GAMs that we initially fitted to our data. Timeseries of slowly

changing tongue positions are characterized by strong correlations between

the position at time t and that at t− 1. Although the mgcv package makes

it possible to include an AR(1) autoregressive model for the residuals, we

were not able to fit a model to the data with residuals that were properly

Gaussian and identically and independently distributed. Since qGAMs are

distribution-free, they are a natural and powerful alternative for the analysis
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of articulatory trajectories as registered with electromagnetic articulography.

5 Analysis

Speakers sometimes reduced the [@] of the inflectional exponent, resulting in

a form such as [zi: tsa:l@n] being realized as [zi: tsa:ln]. We therefore created

a factor (using treatment dummy coding), inflectional exponent, with three

levels: stem+[t], stem+[n], and stem+[@n]. For inclusion in the group with

the [@n] exponent, the duration of the [@] had too exceed 50 ms. The reference

level of exponent was [@n]. We use the notation exponent(j) for the level

of exponent that is instantiated for word j.

Stem vowel duration was normalized between 0 and 1. In what follows,

we refer to this normalized duration as time (abbreviated to t in model

specifications and model summaries).

Vowels’ articulatory trajectories are influenced by the contexts in which

these vowels occur. As a consequence, for each verb (abstracting away from

its inflectional exponents), the consonants flanking the vowel are expected

to have their own specific effect on how the vowel is articulated. We there-

fore included by-verb factor smooths for time in our models. These factor

smooths are the nonlinear equivalent of the combination of by-verb random

intercepts and by-verb random slopes for time in the linear mixed model (see

Baayen, Vasishth, et al. 2017, for detailed discussion). By including these

factor smooths, we stack the cards against the hypothesis that words’ fre-

quency of occurrence also co-determines the articulatory trajectories. In our

qGAMs, an effect of frequency has to establish itself over and above the co-

articulatory effects of the vowels’ context. Since the effect of the inflectional

exponents on articulation is probed with the factor exponent, the combi-
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nation of the by-verb factor smooths and exponent bring under statistical

control all parts of the word forms that potentially co-determine articulation.

As average tongue height was expected to differ between participants, we

also included by-participant random intercepts (bi) in the model specification.

Given a vector of covariates x, a qGAM minimizes the loss function

E[ρτ (y − η)|x],

where ρτ is the pinball loss for quantile τ ∈ c(0, 1). In this study, we consider

only the median (τ = 0.5). The analyses reported below assume that the

linear predictor η for the vertical position of a sensor for speaker i and word

j with exponent exponent(j) at time t can be approximated by

ηi,j,t = β0+bi+fs(t, j)+αexponent(j)+te(t, frequencyj, exponent(j)), bi ∼ N (0, σ).

No sensor data were available for the tongue tip sensor for 464 measure-

ment points (data loss 6.5%). A total of 870 data points was lost for the

tongue mid sensor (12.1%), the loss for the tongue body sensor was 370

measurement points (5.2%). Separate qGAMs were fitted to the remaining

data points for each sensor. Table 1 presents the model summaries, Fig-

ure 1 presents the by-word factor smooths for time, and Figure 2 visualizes

the partial effects of the smooths for the time by frequency by exponent

interaction.
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Figure 1: Partial effect of the by-word factor smooths for time, for tongue
tip (left), tongue mid (center) and tongue body sensors (right). Each curve
represents a word. Across sensor positions, the same words tend to show
roughly the same trends, reflecting similar co-articulatory constraints with
the consonants flanking the [a].
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tongue tip sensor
A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -6.5766 0.9925 -6.6263 < 0.0001
Exponent=t 0.9553 0.0828 11.5331 < 0.0001
Exponent=n 0.5544 0.0855 6.4863 < 0.0001
B. smooth terms edf Ref.df F-value p-value
te(Time, Frequency):Exponent=en 7.5679 7.8737 459.6735 < 0.0001
te(Time, Frequency):Exponent=t 7.5973 7.8898 434.1386 < 0.0001
te(Time, Frequency):Exponent=n 6.1565 6.7754 381.5733 < 0.0001
random intercepts Participant 15.9837 16 11709.6192 < 0.0001
factor smooth (Time,Word) 115.2519 152 5882.5003 < 0.0001

tongue mid sensor
A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -3.3046 1.1901 -2.7768 0.0055
Exponent=t 0.5192 0.0666 7.7925 < 0.0001
Exponent=n 0.2714 0.0717 3.7849 0.0002
B. smooth terms edf Ref.df F-value p-value
te(Time,Frequency):Exponent=en 4.9950 5.0048 533.0317 < 0.0001
te(Time,Frequency):Exponent=t 7.4413 7.8513 423.4764 < 0.0001
te(Time,Frequency):Exponent=n 7.3608 7.8227 490.8539 < 0.0001
random intercepts Participant 14.9942 15.0000 37470.4267 < 0.0001
factor smooth (Time,Word) 101.7264 152.0000 4557.1898 < 0.0001

tongue body sensor
A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -0.3452 1.2854 -0.2686 0.7883
Exponent=t 0.3512 0.0666 5.2732 < 0.0001
Exponent=n 0.4276 0.0693 6.1665 < 0.0001
B. smooth terms edf Ref.df F-value p-value
te(Time, Frequency):Exponent=en 6.1863 6.7421 339.5993 < 0.0001
te(Time, Frequency):Exponent=t 7.5659 7.8606 273.5099 < 0.0001
te(Time, Frequency):Exponent=n 6.8855 7.4905 326.5897 < 0.0001
random intercepts Participant 15.9948 16 45916.4092 < 0.0001
factor smooth (Time, Word) 67.1645 152 6465.9622 < 0.0001

Table 1: QGAMs for the vertical position of the tongue tip, tongue mid, and
tongue body sensor. te: tensor product smooth. The standard deviations
for the by-participant random intercepts are for the tongue tip sensor: 3.72
(95% confidence interval (2.63,5.26); for the tongue mid sensor: 4.65 (95%
confidence interval (3.25,6.65); and for the tongue body sensor 5.25, 95%
confidence interval (3.71,7.42).
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Figure 2: Partial effect of the interaction of time by frequency on the
vertical position of the tongue tip sensor for the three exponents [-@n], [-t], and
[-n]. Top panels: tongue tip sensor, center panels: tongue mid sensor, bottom
panels: tongue body sensor. Deeper shades of blue indicate lower vertical
positions, and darker shades of yellow indicate higher vertical positions.
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We first consider the random-effects in this model. The by-word fac-

tor smooths (Figure 1) were included in order to statistically control for the

consequences for the vowel’s articulation of the preceeding and following con-

sonants. Each curve represents one word (lemma). The curves for stapeln

and bad in the left panel illustrate the very different consequences for articu-

latory trajectories of the place of articulation of the pre-vocalic consonants.

For many words, the curves are roughly similar across sensor positions. For

stapeln, we always find a downward trend, and for bad, an upward trend.

Note that for the tongue tip and tongue mid sensors, variability is greatest

at the edges of the time domain. For the tongue body sensor, by contrast,

variability is reduced most towards the end of the vowel. As will become

clear below, the tongue body sensor profiles itself differently from the tongue

tip and tongue mid sensors.

The standard deviations for the by-participant random intercepts in-

creased from tongue tip sensor: 3.72 (95% confidence interval (2.63,5.26) to

tongue mid sensor: 4.65 (95% confidence interval (3.25,6.65), and further for

the tongue body sensor 5.25, 95% confidence interval (3.71,7.42). Although

the wide confidence intervals advise caution, the increase in variability from

front to back suggests that sensors placed closer to the part of the tongue

that is critically involved in articulating the [a] are more disturbing to the

speaker, and lead to more perturbations of the articulatory trajectories. In

addition, especially the tongue back sensor is the most difficult to attach,

and here between-speaker differences in exact location are most likely.

Next, consider the main effect of exponent (cf. Table 1). As expected,

the intercept, representing (other things being equal) the group mean for

[-@n], was lowest for the tongue tip sensor, intermediate for the tongue mid

sensor, and largest for the tongue body sensor. These relative positions reflect
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that the tongue tip tends to be close to the lower teeth when articulating the

[a], and hence far below the tongue body sensor.

For tongue tip and tongue mid sensors, both the [-t] and [-n] exponents

lead to higher sensor positions compared to [-@n]. The [-t] is articulated even

further away from the [-@n] position than is the case for [-n], which may

reflect both the total absence of a schwa or remnants thereof preceeding the

[-t] exponent, the propensity of many speakers of German to articulate the

[-n] with the tongue blade rather than the tongue tip, and anticipatory velar

lowering for the [-n]. A difference in height between [-t] and [-n] is not present

for the tongue body sensor.

Although the qGAM identified specific articulatory trajectories for each

combination of lemma and exponent, as shown in Figure 1, an effect of word

frequency received solid support as well. The rows of Figure 1 represent the

partial effects for tongue tip (top), tongue mid (center) and tongue body

sensor (bottom), and its columns the effects for [-@n] (left), [-t] (center) and

[-n] (right). Across all panels, the blue areas represent the expected lower

position of the sensors reached that are reached roughly midway through the

vowel.

Note that colors are less bright as one moves down in the graph from

tongue tip to tongue body sensor. This highlights that sensors further into

the mouth show more reduced modulations of frequency. This pattern is

consistent with the differences in intercepts, in that the greatest modulations

over time are present for the tongue tip, the sensor with the lowest intercept.

Thanks to its position in the front of the mouth, and furthest out on the jaw,

the consequences of opening and closing the mouth during [a:] production are

most visible here.

The U-shaped movement of the sensors is modified by frequency. If fre-
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quency would have had no effect at all, all contour lines would be straight

vertical lines. Model comparisons (not shown) pitting the present models

against models without frequency provide strong support for the relevance

of frequency as predictor.

The upper left panel shows that the [-@n] is articulated with the low-

est tongue tip position for the lowest frequency words. Higher-frequency

words not only have a lower minimum, but also, after having reached this

minimum, they reach higher positions more quickly. In other words, higher

frequency words show more co-articulation with the upcoming exponent,

without dampening of the U-shaped articulatory trajectory. This patterning

of the higher-frequency words is present across all sensors for both [-@n] and

[-n].

The [-t] exponent shows an hour-glass pattern, with the lowest positions

being reached for both the lowest and the highest-frequency words. This

same pattern is also visible for the tongue body sensor for the [-n].

The tongue body sensor stands apart with an effect of frequency for the

[-@n] exponent (lower left panel) that is the reverse of that observed for the

other two sensors: the tongue body sensor reaches its lowest position for

higher-frequency words. And whereas the deepest positions for the [-t] expo-

nent are reached for the lowest frequency words for tongue tip and tongue mid

sensors, at the tongue body sensor, the deepest position is more widespread

for the highest frequency words. Thus, for the sensor best monitoring how

the tongue movement, rather than jaw movement, shapes the [a], higher-

frequency words show mastery of deeper articulation of [a] without sacrificing

the benefits of a smooth co-articulation. Note that by the end of the time

window, the tongue has reached a higher position ([-@n], [-n]) or a position

nearly as high ([-t]) as that reached by words with intermediate or lower
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frequencies.

6 Discussion

We used electromagnetic articulography to test whether articulation is also

subject to the law that practice makes perfect. We investigated inflected Ger-

man verbs with [a] as stem vowel with exponents [-t], [-@n], and [-n], focusing

on the vertical trajectories of three sensors placed on the tongue. Articu-

latory trajectories were modulated by frequency of use. For the [-@n] expo-

nent, the passive tongue positions (tongue tip and tongue mid) revealed U-

shaped curves of similar shape that were shifted upwards for higher-frequency

words. Here, co-articulation with the upcoming exponent resulted in an over-

all higher tongue position, while maintaining the amplitude of the U-shaped

curve. For the tongue body sensor, which was closer to the part of the tongue

involved in primary articulation of [a], higher-frequency words showed deeper

and more long-lasting downwards curvature, in combination with earlier and

stronger co-articulation.

Results for the [-n] exponent were similar to those for [-@n] for the tongue

tip and tongue mid sensors. For the tongue body sensor, an hour-glass pat-

tern was visible that also characterized the partial effects for the [-t] exponent.

Here, words with intermediate frequency of use revealed U-shaped trajecto-

ries that were more shallow and at the same time had a higher minimum,

reflecting more co-articulation in combination with a reduced articulatory

target. In other words, the effect that the literature leads one to expect to

be present for high frequency words — a muted articulatory trajectory with

more co-articulation — is visible in part of our data, but for words of in-

termediate frequency. Higher-frequency words either show an overall higher
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positioned but otherwise unchanged U-shaped trajectory, or they show strong

co-articulation and at the same time a steeper U-shaped trajectory.

The hour-glass pattern that characterizes especially words with the [-t]

exponent, such that the lowest positions are reached for words with extreme

frequencies, is open to different interpretations. On the one hand, lemmas

that are highly probable type-wise, i.e., lemmas that have common (log)

frequencies close to the mean (log) frequency, may be articulated with less

effort. Words that are (type-wise) unexpected in the experiment would then

be articulated with more extreme vertical movements. On the other hand, if

production of low-frequency words is dominated by assembly from phone-like

units whereas high-frequency words are realized from larger planning units

(see, e.g., Hickok 2014), then the medium frequency words are the ones for

which not enough experience has accumulated to enable low target positions

to be reached under the constraints of co-articulation. From the perspective

of Blevins, Milin, and Ramscar (2015), the forms of low and high-frequency

words may arise under the opposing pressures of the communicative forces of

predictability and discriminability. Predictability enforces a clear articula-

tory target, with a strong U-shaped trajectory with a low minimum. Discrim-

inability is served by co-articulation (see Kemps, Wurm, et al. 2005; Kemps,

Ernestus, et al. 2005, for the discriminative role of durations of the stems of

inflected words). Surprisingly, with the accumulation of experience, speakers

apparently are able to optimize both constraints simultaneously: For [-@n],

they do so by moving the tongue body down earlier, keeping it down longer,

and then moving it higher.

The importance of frequency of use, as a measure of articulatory profi-

ciency, for understanding articulatory gestures also emerged in several other

studies. Tomaschek, Arnold, Bröker, et al. (under revision) showed that fre-
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quency also modulates the speed-curvature relation. More frequent words,

i.e., words that have received more practice, were articulated with reduced

speed, reduced curvature, overall smoother movement trajectories, and less

articulatory overshoot (see also Sosnik et al. 2004; Tiede et al. 2011). Tomaschek,

Arnold, R. van Rij, et al. (under revision) showed furthermore that articula-

tory movements at more probable word boundaries were produced with less

variability (cf. Goffman et al. 2008).

All these results were obtained for laboratory speech, using a registration

technique that requires placement of sensors on tongue and lips. As a con-

sequence, it is unclear whether the present results generalize to spontaneous

speech (see, e.g., Gahl, Yao, and Johnson 2012, for potential differences in

neighborhood effects in lab speech as compared to spontaneous conversa-

tion). Replication studies, ideally based on corpora of spontaneous speech

with EMA or ultrasound registration, are essential for consolidating the re-

sults observed in the present study.

If the present results are pointing in the right direction, they have two

important theoretical implications. First, the observation that frequency of

occurence modulates the fine detail of how articulatory gestures are realized

challenges the common assumption that articulation is planned post-lexically.

This assumption is implemented in cognitive models for speech production,

such as proposed by Dell (1986), Levelt, Roelofs, and A. S. Meyer (1999),

and Goldstein et al. (2009), which assume that the representations driv-

ing articulation are assembled out of phonemes and morphemes, or gestural

scores associated with these units. These models cannot straightforwardly

accommodate the finding that experience at the level of individual words

co-determines how articulatory trajectories are realized (see also Gahl 2008).

Second, higher-frequency forms are not necessarily more ‘reduced’. We
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note that the decrease in acoustic duration reported for higher-frequency

words (van Bergem 1995; Aylett and Turk 2006; Schulz et al. 2016; Meunier

and Espesser 2011) is not incompatible with the results reported here, as fre-

quency of occurrence happened not to be predictive for the acoustic durations

of our stimuli. Furthermore, the present data are also not necessarily incom-

patible with the increase in vowel centralization reported for high-frequency

as opposed to low-frequency words (Aylett and Turk 2004). For instance, the

tongue tip sensor revealed that higher-frequency words with the [-@n] expo-

nent realize a very similar articulatory trajectory as lower-frequency words,

but shifted to a slightly higher position in the mouth. Although we presently

do not know how exactly the articulatory positions of the different parts of

the tongue shape the average position of vowels in formant space, this kind

of pattern could result in more vowel centralization.

Third, our results suggests that as speakers gain experience with individ-

ual words, the articulatory trajectories of these words move through three

stages: an initial stage with a strongly profiled U-shaped curve and little co-

articulation, followed by a second stage at which co-articulation dominates

at the expense of a shallower trajectory, followed by a third stage at which an

optimal solution is reached that respects both the necessity of profiling and

the need for smooth co-articulation. Experiments with many more stimuli,

covering a much wider range of frequencies, will be required for testing this

hypothesis.
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