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Frequency effect in speech production

▶ Lemma frequency?? (Levelt et al., 1999)

v.s.

▶ Word frequency?? (Janssen et al., 2008)

↓
▶ Contrasting evidence

⇓
▶ Tongue movements

⇒ New opportunities to study cognitive process driving speech
process.
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Previous result (Tomaschek, Tucker, et al., 2018)

▶ Ariculations of a stem vowel [a:], e.g. sagt, depend on...
▶ not only suffixes, e.g. sagt
▶ but also frequency

→ Practice effect on articulation
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Word frequency or Syllable frequency

▶ The practice effect is driven by...
▶ word frequency?? (Janssen et al., 2008)

▶ syllable frequency?? (Levelt et al., 1999)
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Experimental design

▶ Keep syllables constant

▶ Vary morphological conditions

e.g. geschafft [g@Saft] “made/managed it”.
v.s.
Fachschaft [faxSaft] “student association of a (university)
department”.
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Experimental design

▶ Keep syllables constant
▶ Vary morphological conditions

e.g. ge-schaff-t [g@-Saf-t] “made/managed it”.
v.s.
Fach-schaft [fax-Saft] “student association of a (university)
department”.
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Methodological question

▶ How can we best predict what the tongue is doing??

▶ Classical view:
▶ words, lemmas, morphemes, syllables, phones, ....

▶ How about semantics??

⇓
▶ Alternative:

▶ Production driven by semantics
▶ Computational model that predicts forms from semantics.
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Linear Discriminative Learning (LDL) models (R. H. Baayen et al., 2019)
∗

▶ Simple 2-layer network which...

▶ can map forms onto meanings
▶ can map meanings onto forms
▶ is based on discriminative learning mechanism

(Rescorla-Wagner learning rule)

∗LDL available in R (WpmWithLdl)
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Previous studies with LDL

▶ Duration of word final “S” (e.g. plays)

- (Tomaschek, Plag, et al., 2019)

▶ Duration of non-words

- (Chuang et al., 2020)

▶ Segment duration at a morpheme boundary

- (R. H. Baayen et al., 2019)
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Functional load of triphones (2/2)

▶ L#ba = corr(s#ba, sband)

▶ This measure...
▶ quantifies contribution of a specific triphone to the target

semantic vector.
▶ tells us to what extent a particular triphone contributes to

create the target semantic vector.

▶ The higher L

→ The more the target semantic vector is determined by this
certain triphone.

⇓
▶ Functional Load of triphones
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Relative functional load of triphones

▶ Stem triphones, e.g. bemalt [b@ma:lt].

▶ Suffix triphones, e.g. bemalt [b@ma:lt].

⇓
▶ Relative functional load: Lstem − Lsuffix

▶ Greater relative functional load

→ Stem is more important to get to the target meaning.
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Variables: Classical Model

▶ Dependent variable:

▶ Tongue sensor positions

▶ Main predictors:
▶ Time (normalized)
▶ Frequency (log)
▶ Morphological conditions
▶ Tongue types (e.g. tongue tip/body, vertical/horizontal)

▶ Covariates:
▶ Segment duration

▶ Random effects:
▶ Speaker
▶ Previous segment, e.g. sie sagt das [zi: za:kt das]
▶ Internal segment, e.g. sie sagt das [zi: za:kt das]
▶ Next segment, e.g. sie sagt das [zi: za:kt das]
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Variables: Discriminative Model
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Model Comparison

Model Score Edf Diff. Df p-value

Freq.Morph 605825 78
Rel.Func.Load 564386 30 -41439 48

▶ Model with Rel.Func.Load is much simpler AND better.



15/21

Model Comparison

Model Score Edf Diff. Df p-value

Freq.Morph 605825 78
Rel.Func.Load 564386 30 -41439 48

▶ Model with Rel.Func.Load is much simpler AND better.



16/21

Tongue contours by time and Rel.Func.Load

▶ Around the median of Rel.Func.Load

→ the strongest coarticulation
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Synchronization of Tongue Tip and Body
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M.E.Distance between tongue tip and body trajectories

▶ Tongue tip and body are synchronized the most at 0.14
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Tongue contours with the line of the most synchronization

▶ Strongest coarticulation by the
tongue tip

▶ the greatest synchronization

⇓
▶ They coincide

⇓
▶ Optimal coarticulation
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Thank you very much!

This study is funded by the Deutsche Forschungsgemeinschaft (Research Unit FOR2373 ’Spoken Morphology’, Project
’The articulation of morphologically complex words’, PL 151/7-1 and PL 151/8-1)
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learning. Journal of Linguistics, 1–39. doi:
10.1017/S0022226719000203

Tomaschek, F., Tucker, B. V., & Baayen, R. H. (2019). How is
anticipatory coarticulation of suffixes affected by lexical
proficiency? PsyArXiv (Preprent), 1–34.



26/21 26/49

References IV

Tomaschek, F., Tucker, B. V., Fasiolo, M., & Baayen, R. H.
(2018). Practice makes perfect: the consequences of lexical
proficiency for articulation. Linguistics Vanguard, 4.

Tomaschek, F., Wieling, M., Arnold, D., & Baayen, H. (2013).
Word frequency, vowel length and vowel quality in speech
production: An EMA study of the importance of experience.
In Proceedings of the 14th annual conference of the
international speech communication association (interspeech
2013) (pp. 1302–1306).



27/21 27/49

Appendix



28/21 28/49

Hyperparameter selectoin for Random Forest

▶ 20 predictors in total
▶ Rule of thumb 1:

→ 1/3 of the total number
of predictors

→ 6

▶ Rule of thumb 2:

→ Square root (rounded
down) of the total
number of predictors

→ 4

▶ Number of predictors = 5
is adopted in the present
study.
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Training an LDL model

▶ An LDL model is trained on the target words and their
inflectionally-related forms.

e.g. macht, machen, machst, ...

▶ Simulated semantic vectors following H. Baayen, Chuang, and Blevins (2018).
▶ Accuracies:

▶ Comprehension (forms →meanings)

→ 91.7%

▶ Production (meanings →forms)

→ 90.8%
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Mapping between forms and meanings

C =

#ha han #an and ...


hand 1 1 0 1 ...
and 0 0 1 1 ...
band 0 0 0 1 ...
... ... ... ... ... ...

S =

S1 S2 S3 S4 ...


hand 0.989 0.915 0.232 0.190 ...
and 0.004 0.101 0.892 0.380 ...
band 0.643 0.004 0.401 0.899 ...
... ... ... ... ... ...

CF = S
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Conceptual understanding of transformation matrices

[
3
1

]
· 3 =

[
9
3

]
[
9
3

]
· 1
3
=

[
3
1

] CF = S

SG = C
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Mapping between C and S via a weight matrix F

C =

#ha han #an and ...


hand 1 1 0 1 ...
and 0 0 1 1 ...
band 0 0 0 1 ...
... ... ... ... ... ...

S =

S1 S2 S3 S4 ...


hand 0.989 0.915 0.232 0.190 ...
and 0.004 0.101 0.892 0.380 ...
band 0.643 0.004 0.401 0.899 ...
... ... ... ... ... ...

F =

S1 S2 S3 S4 ...


#ha 0.739 0.332 0.392 0.293 ...
han 0.231 0.384 0.904 0.224 ...
#an 0.610 0.092 0.119 0.028 ...
... ... ... ... ... ...
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Mapping by transformation matrices

CF = S

SG = C

▶ Transformation matrix F/G is estimated, given C and S .
▶ Conceptually, F/G is the learned language processing system.

▶ It can predict semantics, based on forms (e.g. tri-phones)

→ CF = Ŝ

▶ It can predict forms, based on semantics.

→ SG = Ĉ
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Model structure

SenTT.Z ~ TongueMorph

+ te(Time, Freq)

+ te(Time, Freq, by=TongueMorph)

+ s(SegmentDuration)

+ s(Speaker, bs=’re’)

+ s(PrevSeg, bs=’re’)

+ s(IntSeg, bs=’re’)

+ s(NextSeg, bs=’re’)



42/21 42/49

Result: Model Summary (Parametric terms)

(A. ParametricTerms) Estimate Std.Error t value p-value

Intercept -68.125 1.586 -42.947 0.000
TongueMorph=TBX.1 -0.216 0.649 -0.333 0.739
TongueMorph=TBX.2 -0.348 0.626 -0.555 0.579
TongueMorph=TBZ.0 79.232 0.479 165.294 0.000
TongueMorph=TBZ.1 79.762 0.645 123.573 0.000
TongueMorph=TBZ.2 80.247 0.628 127.794 0.000
TongueMorph=TTX.0 21.997 0.479 45.914 0.000
TongueMorph=TTX.1 24.186 0.646 37.440 0.000
TongueMorph=TTX.2 22.851 0.629 36.356 0.000
TongueMorph=TTZ.0 78.034 0.479 162.988 0.000
TongueMorph=TTZ.1 78.113 0.643 121.494 0.000
TongueMorph=TTZ.2 78.856 0.630 125.090 0.000
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Result: Model Summary (Smooth Terms) (Main
Predictors)

(B. SmoothTerms) edf Ref.df F p-value

te(Time,Freq):TM=TBX.0 7.055 8.086 3.743 0.000
te(Time,Freq):TM=TBX.1 5.162 5.991 2.792 0.011
te(Time,Freq):TM=TBX.2 9.806 11.300 6.872 0.000
te(Time,Freq):TM=TBZ.0 5.058 5.946 7.817 0.000
te(Time,Freq):TM=TBZ.1 4.355 5.000 5.496 0.000
te(Time,Freq):TM=TBZ.2 13.503 15.859 7.210 0.000
te(Time,Freq):TM=TTX.0 4.789 5.594 5.880 0.000
te(Time,Freq):TM=TTX.1 3.120 3.232 9.722 0.000
te(Time,Freq):TM=TTX.2 11.728 13.598 8.529 0.000
te(Time,Freq):TM=TTZ.0 5.634 6.548 19.269 0.000
te(Time,Freq):TM=TTZ.1 6.483 7.316 11.036 0.000
te(Time,Freq):TM=TTZ.2 13.563 15.834 12.682 0.000
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Result: Model Summary (Smooth Terms) (Covariates &
REs)

(B. SmoothTerms) edf Ref.df F p-value

s(SegmentDuration) 1.045 1.088 1.621 0.180
s(Speaker) 35.863 36.000 1201.290 0.000
s(PreviousSegment) 16.637 19.000 150.671 0.000
s(InternalSegment) 5.647 10.000 83.385 0.016
s(NextSegment) 34.284 63.000 36.269 0.000
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Model structure (LDL-measure model)

SenTT.Z ~ TongueType

+ te(Time, RelFuncLoad)

+ te(Time, RelFuncLoad, by=TongueType)

+ s(SegmentDuration)

+ s(Speaker, bs=’re’)

+ s(PrevSeg, bs=’re’)

+ s(IntSeg, bs=’re’)

+ s(NextSeg, bs=’re’)
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Result: Model Summary (Parametric terms)

(A. ParametricTerms) Estimate Std.Error t value p-value

Intercept -67.790 1.510 -44.898 0.000
TongueType=TBZ 79.970 0.174 458.493 0.000
TongueType=TTX 21.424 0.174 123.433 0.000
TongueType=TTZ 78.278 0.175 448.457 0.000
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Result: Model Summary (Smooth Terms)

(B. SmoothTerms) edf Ref.df F p-value

te(Time,RelFuncLoad):TBX 6.400 7.616 3.744 0.000
te(Time,RelFuncLoad):TBZ 6.491 7.494 19.554 0.000
te(Time,RelFuncLoad):TTX 10.538 12.938 6.126 0.000
te(Time,RelFuncLoad):TTZ 14.062 17.307 16.840 0.000
s(SegmentDuration) 1.775 2.236 2.474 0.099
s(Speaker) 35.841 36.000 1440.440 0.000
s(PreviousSegment) 16.313 19.000 202.549 0.000
s(InternalSegment) 4.465 10.000 41.164 0.345
s(NextSegment) 37.535 63.000 53.698 0.000
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Tongue contours by time and Rel.Func.Load all 4 tongue types
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Tongue contours and synchronization all 4 tongue types
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