Co-articulation between stem vowels and suffixes: semantics all the way down

Motoki Saito, Fabian Tomaschek, R. Harald Baayen

Words in the World 18.10.2020

<□ > < □ > < □ > < ■ > < ≡ > < ≡ > = のへで 1/21

Lemma frequency?? (Levelt et al., 1999)

Lemma frequency?? (Levelt et al., 1999)

v.s.

► Word frequency?? (Janssen et al., 2008)

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 2/21

► Lemma frequency?? (Levelt et al., 1999)

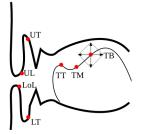
v.s.

Word frequency?? (Janssen et al., 2008)
 Contrasting evidence

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 2/21

Lemma frequency?? (Levelt et al., 1999)

v.s.

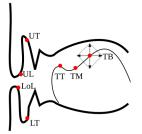

```
    Word frequency?? (Janssen et al., 2008)
    Contrasting evidence
```

∜

- Tongue movements
 - $\Rightarrow\,$ New opportunities to study cognitive process driving speech process.

Electromagnetic Articulography (EMA)

Sensors glued on the tongue.



<ロ > < 母 > < 臣 > < 臣 > 臣 の < つ < 3/21

Electromagnetic Articulography (EMA)

- Sensors glued on the tongue.
- Sensor positions are registered separately.

Ariculations of a stem vowel [aː], e.g. sagt, depend on...

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ariculations of a stem vowel [a:], e.g. sagt, depend on...

<□ > < @ > < E > < E > E のQ ↔ 4/21

not only suffixes, e.g. sagt

Ariculations of a stem vowel [aː], e.g. sagt, depend on...

<□ > < @ > < E > < E > E のQ ↔ 4/21

- not only suffixes, e.g. sagt
- but also frequency

Ariculations of a stem vowel [aː], e.g. sagt, depend on...

<□ > < @ > < E > < E > E の < e /21

- not only suffixes, e.g. sagt
- but also frequency
 - $\rightarrow~$ Practice effect on articulation

Word frequency or Syllable frequency

- ► The practice effect is driven by...
 - word frequency?? (Janssen et al., 2008)
 - syllable frequency?? (Levelt et al., 1999)

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ ○ 5/21

Keep syllables constant

- Keep syllables constant
- Vary morphological conditions

<ロ > < 母 > < 臣 > < 臣 > 臣 の Q @ 6/21

- Keep syllables constant
- Vary morphological conditions
 - e.g. geschafft [gəʃaft] "made/managed it".

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 6/21

- Keep syllables constant
- Vary morphological conditions
 - e.g. geschafft [gəʃaft] "made/managed it".
 - v.s.

Fachschaft [faxʃaft] "student association of a (university) department".

- Keep syllables constant
- Vary morphological conditions
 - e.g. geschafft [gə**ʃaft**] "made/managed it".
 - v.s.

 $\label{eq:Fachschaft} \textit{[fax}\texttt{Jaft]} \texttt{``student association of a (university) department''.}$

- Keep syllables constant
- Vary morphological conditions

```
e.g. ge-schaff-t [gə-ʃaf-t] "made/managed it".
```

v.s.

 $\label{eq:Fach-schaft} \ensuremath{\left[\mathsf{fax-Jaft} \right]} \ensuremath{\left[\mathsf{fax-Jaft} \ensuremath{\left[\mathsf{fax-Jaft} \right]} \ensuremath{\left[\mathsf{fax-Jaft} \ensuremath{\left[\mathsf{fax-Jaft}$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 6/21

How can we best predict what the tongue is doing??

- How can we best predict what the tongue is doing??
- Classical view:
 - words, lemmas, morphemes, syllables, phones,

<ロ > < 母 > < 臣 > < 臣 > 臣 の < で 7/21

- How can we best predict what the tongue is doing??
- Classical view:
 - words, lemmas, morphemes, syllables, phones,

<□ > < @ > < E > < E > E のQ ?/21

How about semantics??

- How can we best predict what the tongue is doing??
- Classical view:
 - words, lemmas, morphemes, syllables, phones,

<□ > < @ > < E > < E > E のQ ?/21

How about semantics??

- How can we best predict what the tongue is doing??
- Classical view:
 - words, lemmas, morphemes, syllables, phones,

<□ > < @ > < E > < E > E のQ ?/21

- How about semantics??
- ₩
- Alternative:

- How can we best predict what the tongue is doing??
- Classical view:
 - words, lemmas, morphemes, syllables, phones,

- How about semantics??
- ∜
- Alternative:
 - Production driven by semantics

- How can we best predict what the tongue is doing??
- Classical view:
 - words, lemmas, morphemes, syllables, phones,
- How about semantics??
- ∜
- Alternative:
 - Production driven by semantics
 - Computational model that predicts forms from semantics.

<□▶<∄▶<≧▶<≧▶ ≧ 8/21

Simple 2-layer network which...

*LDL available in R (WpmWithLdl)

Simple 2-layer network which...

can map forms onto meanings

- Simple 2-layer network which...
 - can map forms onto meanings
 - can map meanings onto forms

- Simple 2-layer network which...
 - can map forms onto meanings
 - can map meanings onto forms
 - is based on discriminative learning mechanism (Rescorla-Wagner learning rule)

Previous studies with LDL

Duration of word final "S" (e.g. plays)

<□ > < @ > < E > < E > E のQ 9/21

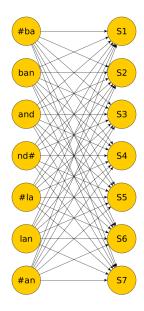
- (Tomaschek, Plag, et al., 2019)

Previous studies with LDL

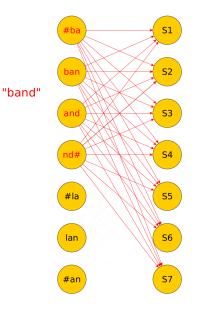
Duration of word final "S" (e.g. plays)

<ロト < 母 ト < 目 ト < 目 ト 目 の Q C 9/21

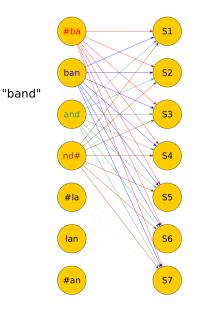
- (Tomaschek, Plag, et al., 2019)
- Duration of non-words
 - (Chuang et al., 2020)

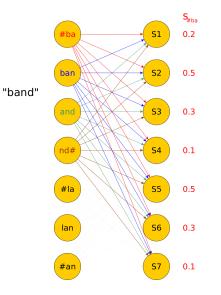

Previous studies with LDL

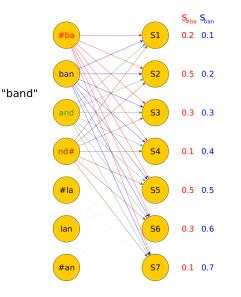
- Duration of word final "S" (e.g. plays)
 - (Tomaschek, Plag, et al., 2019)
- Duration of non-words
 - (Chuang et al., 2020)
- Segment duration at a morpheme boundary


<ロト < 母 ト < 目 ト < 目 ト 目 の Q C 9/21

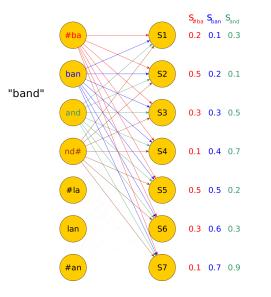
- (R. H. Baayen et al., 2019)


Functional load of triphones (1/2)

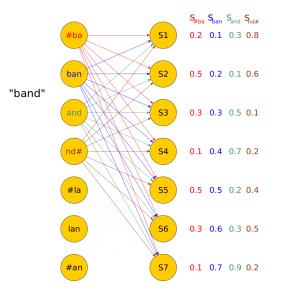

Functional load of triphones (1/2)

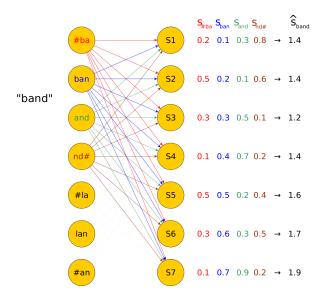


◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 10/21



◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 10/21




<ロ > < 回 > < 目 > < 目 > < 目 > 三 の へ つ 10/21

<ロ > < 回 > < 目 > < 目 > < 目 > 三 の へ つ 10/21

<ロ > < 回 > < 目 > < 目 > < 目 > 三 の へ つ 10/21

< □ > < @ > < E > < E > E の Q · 10/21

•
$$L_{\#ba} = corr(\mathbf{s}_{\#ba}, \mathbf{s}_{band})$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$L_{\#ba} = corr(\mathbf{s}_{\#ba}, \mathbf{s}_{band})$$

This measure...

<□ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > ■ ⑦ Q (~ 11/21)

•
$$L_{\#ba} = corr(\mathbf{s}_{\#ba}, \mathbf{s}_{band})$$

- This measure...
 - quantifies contribution of a specific triphone to the target semantic vector.

<□ > < @ > < E > < E > E の Q · 11/21

•
$$L_{\#ba} = corr(\mathbf{s}_{\#ba}, \mathbf{s}_{band})$$

- This measure...
 - quantifies contribution of a specific triphone to the target semantic vector.
 - tells us to what extent a particular triphone contributes to create the target semantic vector.

•
$$L_{\#ba} = corr(\mathbf{s}_{\#ba}, \mathbf{s}_{band})$$

- This measure...
 - quantifies contribution of a specific triphone to the target semantic vector.
 - tells us to what extent a particular triphone contributes to create the target semantic vector.

< □ > < @ > < E > < E > E の Q · 11/21

► The higher *L*

•
$$L_{\#ba} = corr(\mathbf{s}_{\#ba}, \mathbf{s}_{band})$$

- This measure...
 - quantifies contribution of a specific triphone to the target semantic vector.
 - tells us to what extent a particular triphone contributes to create the target semantic vector.
- ► The higher L
 - $\rightarrow\,$ The more the target semantic vector is determined by this certain triphone.

< □ > < @ > < E > < E > E の Q · 11/21

•
$$L_{\#ba} = corr(\mathbf{s}_{\#ba}, \mathbf{s}_{band})$$

- This measure...
 - quantifies contribution of a specific triphone to the target semantic vector.
 - tells us to what extent a particular triphone contributes to create the target semantic vector.
- ► The higher *L*
 - $\rightarrow\,$ The more the target semantic vector is determined by this certain triphone.

< □ > < @ > < E > < E > E の Q · 11/21

∜

Functional Load of triphones

Stem triphones, e.g. *bemalt* [bəmaɪlt].

- Stem triphones, e.g. *bemalt* [bəmaɪlt].
- Suffix triphones, e.g. *bemalt* [bəmaɪlt].

- Stem triphones, e.g. *bemalt* [bəmaɪlt].
- Suffix triphones, e.g. bemalt [bəma:lt].
- Relative functional load: L_{stem} L_{suffix}

- Stem triphones, e.g. *bemalt* [bəmaɪlt].
- Suffix triphones, e.g. bemalt [bəma:lt].
- ► Relative functional load: L_{stem} L_{suffix}
 - Greater relative functional load

<□> < @> < E> < E> E の < C 12/21

- Stem triphones, e.g. bemalt [bəmaɪlt].
- Suffix triphones, e.g. bemalt [bəmalt].

∜

- Relative functional load: $L_{stem} L_{suffix}$
 - Greater relative functional load
 - $\rightarrow~$ Stem is more important to get to the target meaning.

<□> < @> < E> < E> E の < C 12/21

Dependent variable:

Dependent variable:

Tongue sensor positions

- Dependent variable:
 - Tongue sensor positions
- Main predictors:

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)

- Dependent variable:
 - Tongue sensor positions

- Main predictors:
 - Time (normalized)
 - Frequency (log)

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - ► Tongue types (e.g. tongue tip/body, vertical/horizontal)

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)

Covariates:

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)

- Covariates:
 - Segment duration

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)

- Covariates:
 - Segment duration
- Random effects:

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)

- Covariates:
 - Segment duration
- Random effects:
 - Speaker

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)
- Covariates:
 - Segment duration
- Random effects:
 - Speaker
 - Previous segment, e.g. sie sagt das [ziː zaːkt das]

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)
- Covariates:
 - Segment duration
- Random effects:
 - Speaker
 - Previous segment, e.g. sie sagt das [ziː zaːkt das]
 - Internal segment, e.g. sie sagt das [zii zaikt das]

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)
- Covariates:
 - Segment duration
- Random effects:
 - Speaker
 - Previous segment, e.g. sie sagt das [ziː zaːkt das]
 - Internal segment, e.g. sie sagt das [zii zaikt das]
 - Next segment, e.g. sie sagt das [ziː zaːkt das]

Variables: Discriminative Model

<ロ > < 部 > < 量 > < 量 > < 量 > < 量 > < 14/21

Variables: Discriminative Model

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)
- Covariates:
 - Segment duration
- Random effects:
 - Speaker
 - Previous segment, e.g. sie sagt das [ziː zaːkt das]
 - Internal segment, e.g. sie sagt das [ziː zaːkt das]
 - Next segment, e.g. sie sagt das [ziː zaːkt das]

Variables: Discriminative Model

- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Frequency (log)
 - Morphological conditions
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)
- Covariates:
 - Segment duration
- Random effects:
 - Speaker
 - Previous segment, e.g. sie sagt das [ziː zaːkt das]
 - Internal segment, e.g. sie sagt das [ziː zaːkt das]
 - Next segment, e.g. sie sagt das [ziː zaːkt das]

Variables: Discriminative Model

Dependent variable:

- Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - ►
 - ►
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)
- Covariates:
 - Segment duration
- Random effects:
 - Speaker
 - Previous segment, e.g. sie sagt das [ziː zaːkt das]
 - Internal segment, e.g. sie sagt das [ziː zaːkt das]
 - Next segment, e.g. sie sagt das [ziː zaːkt das]

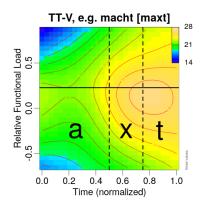
Variables: Discriminative Model

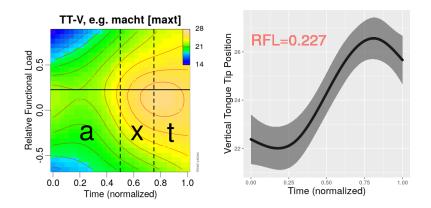
- Dependent variable:
 - Tongue sensor positions
- Main predictors:
 - Time (normalized)
 - Relative Functional Load
 - Tongue types (e.g. tongue tip/body, vertical/horizontal)
- Covariates:
 - Segment duration
- Random effects:
 - Speaker
 - Previous segment, e.g. sie sagt das [ziː zaːkt das]
 - Internal segment, e.g. sie sagt das [ziː zaːkt das]
 - Next segment, e.g. sie sagt das [ziː zaːkt das]

Model Comparison

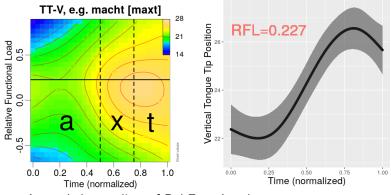
Model	Score	Edf	Diff.	Df	<i>p</i> -value
Freq.Morph	605825	78			
Rel.Func.Load	564386	30	-41439	48	

<□ > < ■ > < ■ > < ■ > < ■ > = の < 0 15/21

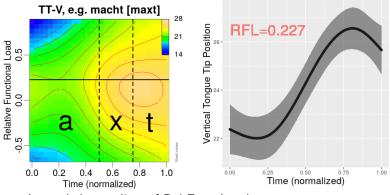

Model Comparison


Model	Score	Edf	Diff.	Df	<i>p</i> -value
Freq.Morph	605825	78			
Rel.Func.Load	564386	30	-41439	48	

Model with Rel.Func.Load is much simpler AND better.

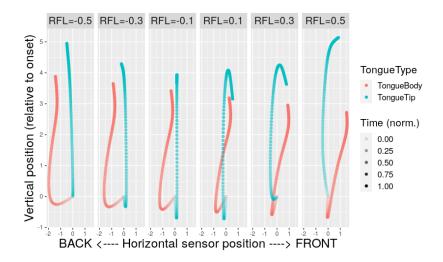

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q @ 15/21

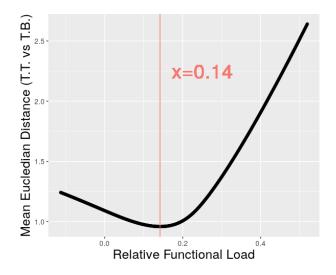
イロト イポト イヨト イヨト



◆□ → < @ → < 注 → < 注 → 注 の < ○ 16/21</p>

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

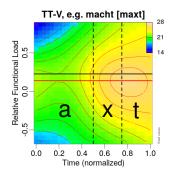

Around the median of Rel.Func.Load

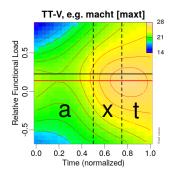

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- Around the median of Rel.Func.Load
 - \rightarrow the strongest coarticulation

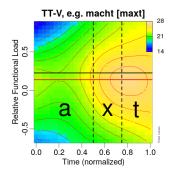
Synchronization of Tongue Tip and Body

M.E.Distance between tongue tip and body trajectories



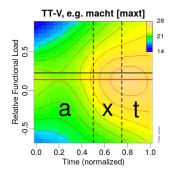

Tongue tip and body are synchronized the most at 0.14

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

 Strongest coarticulation by the tongue tip

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

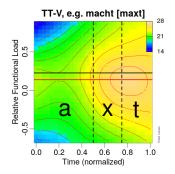


 Strongest coarticulation by the tongue tip

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

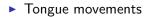
the greatest synchronization

∜


 Strongest coarticulation by the tongue tip

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- the greatest synchronization
- They coincide


∜

∜

- Strongest coarticulation by the tongue tip
- the greatest synchronization
- They coincide
- Optimal coarticulation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Tongue movements

 $\rightarrow\,$ revealing and informative for the mental lexicon

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tongue movements

 $\rightarrow\,$ revealing and informative for the mental lexicon

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

EMA

- Tongue movements
 - $\rightarrow\,$ revealing and informative for the mental lexicon
- EMA
 - $\rightarrow\,$ interesting and powerful to study speech production

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Word frequency??
- Syllable frequency??

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 21/21

- Word frequency??
- Syllable frequency??
- \downarrow
- Once semantics is considered straightforwardly,

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ↔ 21/21

- Word frequency??
- Syllable frequency??
- \downarrow
- Once semantics is considered straightforwardly,
- Once the relation between forms and meanings is taken straightforwardly,

- Word frequency??
- Syllable frequency??
- \downarrow
- Once semantics is considered straightforwardly,
- Once the relation between forms and meanings is taken straightforwardly,

∜

▶ It is irrelevant which frequency measure is "correct".

- Word frequency??
- Syllable frequency??
- \downarrow
- Once semantics is considered straightforwardly,
- Once the relation between forms and meanings is taken straightforwardly,

∜

▶ It is irrelevant which frequency measure is "correct".

- Word frequency??
- Syllable frequency??
- \downarrow
- Once semantics is considered straightforwardly,
- Once the relation between forms and meanings is taken straightforwardly,

 \Downarrow

It is irrelevant which frequency measure is "correct".

Semantics: all the way down

Thank you very much!

This study is funded by the Deutsche Forschungsgemeinschaft (Research Unit FOR2373 'Spoken Morphology', Project 'The articulation of morphologically complex words', PL 151/7-1 and PL 151/8-1)

References I

Baayen, H., Chuang, Y.-Y., & Blevins, J. P. (2018). Inflectional morphology with linear mappings. The Mental Lexicon, 13(2), 230–268. doi: 10.1075/ml.18010.baa Baayen, R. H., Chuang, Y.-Y., Shafaei-Bajestan, E., & Blevins, J. P. (2019). The Discriminative Lexicon: A Unified Computational Model for the Lexicon and Lexical Processing in Comprehension and Production Grounded Not in (De)Composition but in Linear Discriminative Learning. *Complexity*, 1–39. doi: 10.1155/2019/4895891 Cho, T. (2001). Effects of Morpheme Boundaries on Intergestural Timing: Evidence from Korean. Phonetica, 58, 129-162.

References II

Chuang, Y.-Y., Vollmer, M. L., Shafaei-Bajestan, E., Gahl, S., Hendrix, P., & Baayen, R. H. (2020). The processing of pseudoword form and meaning in production and comprehension: A computational modeling approach using linear discriminative learning. *Behavior Research Methods*. doi: 10.3758/s13428-020-01356-w

Hertrich, I., & Ackermann, H. (2000). Lipjaw and tonguejaw coordination during rate-controlled syllable repetitions. The Journal of the Acoustical Society of America, 107(4), 2236–2247. doi: 10.1121/1.428504

Janssen, N., Bi, Y., & Caramazza, A. (2008). A tale of two frequencies: Determining the speed of lexical access for Mandarin Chinese and English compounds (Vol. 23) (No. 7-8). doi: 10.1080/01690960802250900
Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of

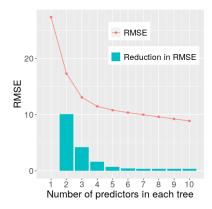
lexical access in speech production. *Behavioral and Brain Sciences*, 22, 1–75.

References III

Tiede, M., Mooshammer, C., Goldstein, L., Shattuck-Hufnagel, S., & Perkell, J. S. (2011). Motor learning of articulator trajectories in the production of novel utterances. *Proceedings of the XVIIth International Congress of Phonetic Sciences*, 1986–1989.

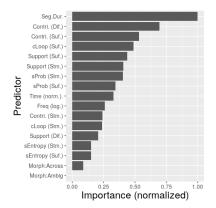
Tomaschek, F., Arnold, D., Bröker, F., & Baayen, R. H. (2018). Lexical frequency co-determines the speed-curvature relation in articulation. *Journal of Phonetics*, 68, 103–116.

- Tomaschek, F., Plag, I., Ernestus, M., & Baayen, R. H. (2019). Phonetic effects of morphology and context: Modeling the duration of word-final S in English with naïve discriminative learning. *Journal of Linguistics*, 1–39. doi: 10.1017/S0022226719000203
- Tomaschek, F., Tucker, B. V., & Baayen, R. H. (2019). How is anticipatory coarticulation of suffixes affected by lexical proficiency? *PsyArXiv* (*Preprent*), 1–34.

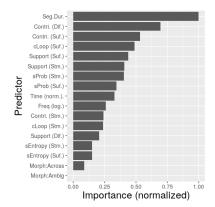

References IV

Tomaschek, F., Tucker, B. V., Fasiolo, M., & Baayen, R. H. (2018). Practice makes perfect: the consequences of lexical proficiency for articulation. *Linguistics Vanguard*, *4*.
Tomaschek, F., Wieling, M., Arnold, D., & Baayen, H. (2013). Word frequency, vowel length and vowel quality in speech production: An EMA study of the importance of experience. In *Proceedings of the 14th annual conference of the international speech communication association (interspeech* 2013) (pp. 1302–1306).

Appendix

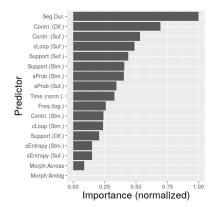

▲□▶ ▲□▶ ▲■▶ ▲■▶ ■ のへで 27/21 27/49

Hyperparameter selectoin for Random Forest

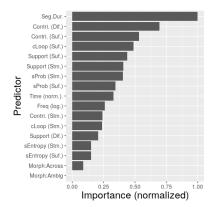


- 20 predictors in total
- Rule of thumb 1:
 - \rightarrow 1/3 of the total number of predictors
 - \rightarrow 6
- Rule of thumb 2:
- Number of predictors = 5 is adopted in the present study.

Predictor selection by Random Forest


Predictor selection by Random Forest

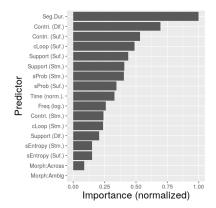
Morphological status


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のQで - 29/21 - 29/49

Predictor selection by Random Forest

Morphological status
 → not a strong predictor.

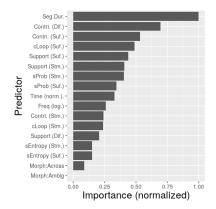
<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ Q (21 - 29/49)



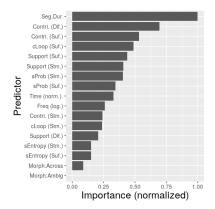
Morphological status

 not a strong predictor.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ


Frequency

- Morphological status


 not a strong predictor.
- Frequency
 - \rightarrow in the middle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Morphological status

 not a strong predictor.
- Frequency
 - \rightarrow in the middle.
- Contri.(Dif.) = Relative Functional Load

- ► Morphological status → not a strong predictor.
- Frequency
 - \rightarrow in the middle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- Contri.(Dif.) = Relative Functional Load

Training an LDL model

- An LDL model is trained on the target words and their inflectionally-related forms.
 - e.g. macht, machen, machst, ...
- ► Simulated semantic vectors following H. Baayen, Chuang, and Blevins (2018).

◆□ ▶ ◆母 ▶ ◆ 玉 ▶ ◆ 玉 ▶ 玉 ⑦ Q ○ 30/21 30/49

- Accuracies:
 - ▶ Comprehension (forms → meanings)
 - \rightarrow 91.7%
 - ▶ Production (meanings →forms)
 - \rightarrow 90.8%

Mapping between forms and meanings

Mapping between forms and meanings

CF = S

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ ■ ⑦ < ♡ 31/21 31/49</p>

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot ? = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$$

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ● ● ⑦ Q ○ 32/21 32/49

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \mathbf{3} = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 33/21 33/49</p>

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot ? = \begin{bmatrix} 10 \\ 3 \end{bmatrix}$$

▲□▶ < □▶ < 三▶ < 三▶ < 三 > ○へ ○ 34/21 34/49

$$\begin{bmatrix} 3 \\ 1 \end{bmatrix} \cdot \mathbf{3} = \begin{bmatrix} 9 \\ 3 \end{bmatrix} \neq \begin{bmatrix} 10 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 3\\1 \end{bmatrix} \cdot \mathbf{3} = \begin{bmatrix} 9\\3 \end{bmatrix} \neq \begin{bmatrix} 10\\3 \end{bmatrix}$$
$$\begin{bmatrix} 3\\1 \end{bmatrix} \cdot \mathbf{5} = \begin{bmatrix} 15\\5 \end{bmatrix} \neq \begin{bmatrix} 10\\3 \end{bmatrix}$$

▲□▶ < □▶ < 三▶ < 三▶ < 三 > ○へ ○ 36/21 36/49

$$\begin{bmatrix} 3\\1 \end{bmatrix} \cdot \mathbf{3} = \begin{bmatrix} 9\\3 \end{bmatrix}$$
$$\begin{bmatrix} 9\\3 \end{bmatrix} \cdot \frac{1}{3} = \begin{bmatrix} 3\\1 \end{bmatrix}$$

◆□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 37/21 37/49</p>

$$\begin{bmatrix} 3\\1 \end{bmatrix} \cdot 3 = \begin{bmatrix} 9\\3 \end{bmatrix}$$

$$CF = S$$

$$\begin{bmatrix} 9\\3 \end{bmatrix} \cdot \frac{1}{3} = \begin{bmatrix} 3\\1 \end{bmatrix}$$

$$SG = C$$

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ ▶ ■ ⑦ ۹ ○ 38/21 38/49

Mapping between C and S via a weight matrix F

$$C = \frac{hand}{and} \begin{pmatrix} 1 & 1 & 0 & 1 & \dots \\ 0 & 0 & 1 & 1 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$
$$S = \frac{hand}{band} \begin{pmatrix} 0.989 & 0.915 & 0.232 & 0.190 & \dots \\ 0.004 & 0.101 & 0.892 & 0.380 & \dots \\ 0.643 & 0.004 & 0.401 & 0.899 & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

$$F = \begin{array}{cccccccccc} S_1 & S_2 & S_3 & S_4 & \dots \\ & & & \\ han \\ & & \\ man \end{array} \begin{pmatrix} 0.739 & 0.332 & 0.392 & 0.293 & \dots \\ 0.231 & 0.384 & 0.904 & 0.224 & \dots \\ 0.610 & 0.092 & 0.119 & 0.028 & \dots \\ & & & \\ \dots & & & \dots & \dots & \dots \end{pmatrix}$$

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q ⁽→ 39/21 39/49

Mapping by transformation matrices

CF = SSG = C

- Transformation matrix F/G is estimated, given C and S.
- Conceptually, F/G is the learned language processing system.
 - ▶ It can predict semantics, based on forms (e.g. tri-phones) → $CF = \hat{S}$

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ Q ○ 40/21 40/49

It can predict forms, based on semantics.

$$\rightarrow$$
 SG = \hat{C}

Model structure

SenTT.Z ~ TongueMorph

- + te(Time, Freq)
- + te(Time, Freq, by=TongueMorph)
- + s(SegmentDuration)

Result: Model Summary (Parametric terms)

(A. ParametricTerms)	Estimate	Std.Error	t value	<i>p</i> -value
Intercept	-68.125	1.586	-42.947	0.000
TongueMorph=TBX.1	-0.216	0.649	-0.333	0.739
TongueMorph=TBX.2	-0.348	0.626	-0.555	0.579
TongueMorph=TBZ.0	79.232	0.479	165.294	0.000
TongueMorph=TBZ.1	79.762	0.645	123.573	0.000
TongueMorph=TBZ.2	80.247	0.628	127.794	0.000
TongueMorph=TTX.0	21.997	0.479	45.914	0.000
TongueMorph=TTX.1	24.186	0.646	37.440	0.000
TongueMorph=TTX.2	22.851	0.629	36.356	0.000
TongueMorph=TTZ.0	78.034	0.479	162.988	0.000
TongueMorph=TTZ.1	78.113	0.643	121.494	0.000
TongueMorph=TTZ.2	78.856	0.630	125.090	0.000

Result: Model Summary (Smooth Terms) (Main Predictors)

(B. SmoothTerms)	edf	Ref.df	F	<i>p</i> -value
te(Time,Freq):TM=TBX.0	7.055	8.086	3.743	0.000
te(Time,Freq):TM=TBX.1	5.162	5.991	2.792	0.011
te(Time,Freq):TM=TBX.2	9.806	11.300	6.872	0.000
te(Time,Freq):TM=TBZ.0	5.058	5.946	7.817	0.000
te(Time,Freq):TM=TBZ.1	4.355	5.000	5.496	0.000
te(Time,Freq):TM=TBZ.2	13.503	15.859	7.210	0.000
te(Time,Freq):TM=TTX.0	4.789	5.594	5.880	0.000
te(Time,Freq):TM=TTX.1	3.120	3.232	9.722	0.000
te(Time,Freq):TM=TTX.2	11.728	13.598	8.529	0.000
te(Time,Freq):TM=TTZ.0	5.634	6.548	19.269	0.000
te(Time,Freq):TM=TTZ.1	6.483	7.316	11.036	0.000
te(Time,Freq):TM=TTZ.2	13.563	15.834	12.682	0.000

Result: Model Summary (Smooth Terms) (Covariates & REs)

(B. SmoothTerms)	edf	Ref.df	F	<i>p</i> -value
s(SegmentDuration)	1.045	1.088	1.621	0.180
s(Speaker)	35.863	36.000	1201.290	0.000
s(PreviousSegment)	16.637	19.000	150.671	0.000
s(InternalSegment)	5.647	10.000	83.385	0.016
s(NextSegment)	34.284	63.000	36.269	0.000

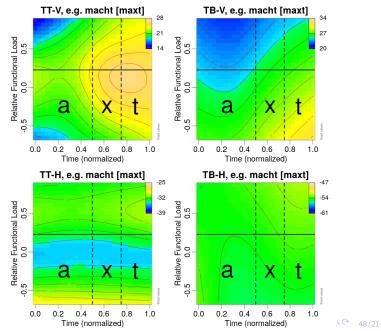
Model structure (LDL-measure model)

SenTT.Z ~ TongueType

- + te(Time, RelFuncLoad)
- + te(Time, RelFuncLoad, by=TongueType)

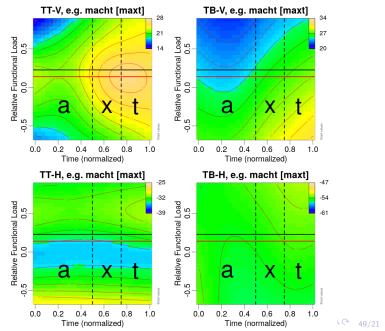
◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

- + s(SegmentDuration)
- + s(Speaker, bs='re')
- + s(PrevSeg, bs='re')
- + s(IntSeg, bs='re')
- + s(NextSeg, bs='re')


Result: Model Summary (Parametric terms)

(A. ParametricTerms)	Estimate	Std.Error	t value	<i>p</i> -value
Intercept	-67.790	1.510	-44.898	0.000
TongueType=TBZ	79.970	0.174	458.493	0.000
TongueType=TTX	21.424	0.174	123.433	0.000
TongueType=TTZ	78.278	0.175	448.457	0.000

Result: Model Summary (Smooth Terms)


(B. SmoothTerms)	edf	Ref.df	F	<i>p</i> -value
te(Time,RelFuncLoad):TBX	6.400	7.616	3.744	0.000
te(Time,RelFuncLoad):TBZ	6.491	7.494	19.554	0.000
te(Time,RelFuncLoad):TTX	10.538	12.938	6.126	0.000
te(Time,RelFuncLoad):TTZ	14.062	17.307	16.840	0.000
s(SegmentDuration)	1.775	2.236	2.474	0.099
s(Speaker)	35.841	36.000	1440.440	0.000
s(PreviousSegment)	16.313	19.000	202.549	0.000
s(InternalSegment)	4.465	10.000	41.164	0.345
s(NextSegment)	37.535	63.000	53.698	0.000

Tongue contours by time and Rel.Func.Load all 4 tongue types

48/49

Tongue contours and synchronization all 4 tongue types

49/49