

Lexical storage and morphological segmentability in speech production

New evidence from English derivational affixes

Simon David Stein Ingo Plag

Frequency and duration

Lexical frequency

How often does a word occur in a language?

Acoustic duration

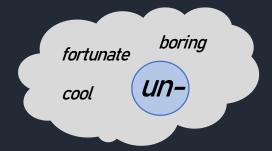
How long do we pronounce linguistic units?

Usual assumption:

The higher the frequency, the shorter the duration of linguistic units such as words, bases, and affixes.

Storage in the mental lexicon

Whole-word storage



complex words are stored unanalyzed

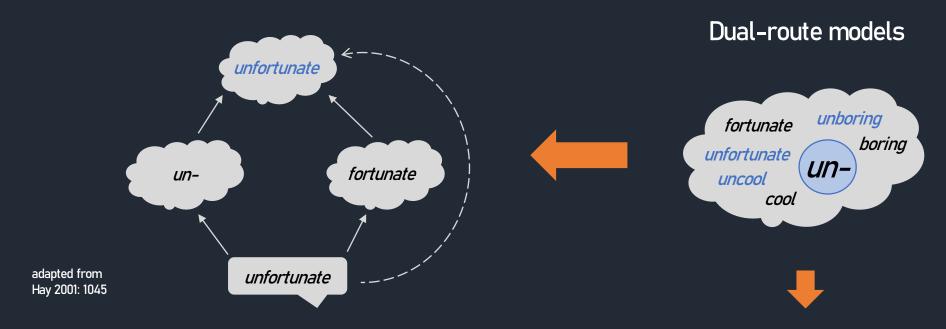
durations will be shorter the higher the word frequency

Compositional models

morphemes are stored separately

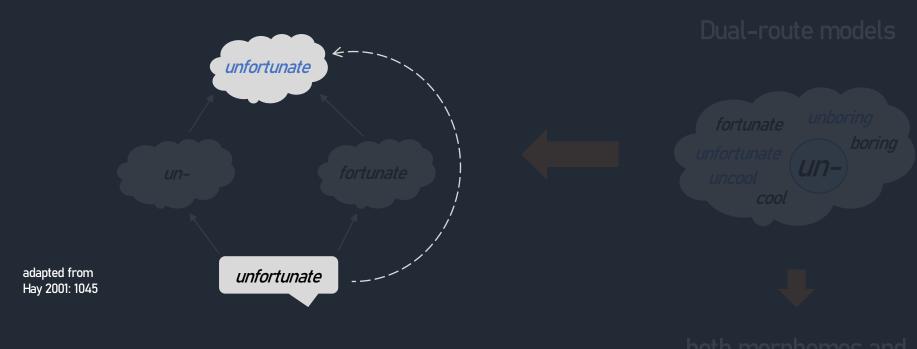
durations will be shorter the higher the base frequency

Dual-route models


both morphemes and complex words are stored

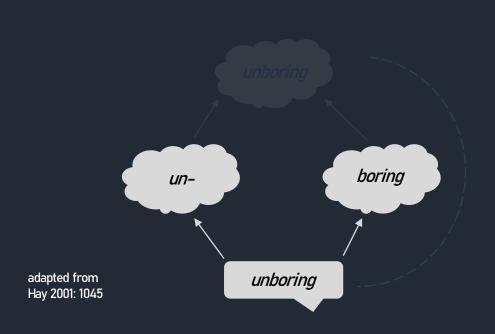
durations will be shorter the lower the relative frequency

Segmentability


both morphemes and complex words are stored

durations will be shorter the lower the relative frequency

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF


Segmentability

Word	Frequency	Segmentability	Prediction	
fortunate	6000	lov	shorter	
unfortunate	6915	low	duration	
		_		

HEINRICH HEINE

Segmentability

Word	Frequency	Segmentability	Prediction
boring	7483	li tada	longer
unboring	4	high	duration

durations will be shorter the lower the relative frequency

Previous research

Caselli et al. 2016

- inflectional suffixes ing, -ed, and -s
- > evidence for both whole-word storage and composition
 - > higher base frequency → shorter word duration
 - \rightarrow higher word frequency \rightarrow shorter word duration

Hay 2003, 2007

segmentability effects for un- and -ly

Plag and Ben Hedia 2018

- > segmentability effects for *un* and *dis*-
- > null effects for negative *in*-, locative *in*-, and -*ly*

Contradictory evidence:

Why do the frequency measures sometimes show and sometimes not show effects?

Present study

Hypothesis 1

Higher word frequency - shorter duration of word, base, and affix

Hypothesis 2

Higher base frequency → shorter duration of word, base, and affix

Hypothesis 3

Higher relative frequency → longer duration of word, base, and affix ≈ more segmentability

Data and measurement

Data collection

- > AudioBNC
- Forced Alignment
- > Praat textgrids
- manual cleaning of results

Affixes

N

364

118

476

- -ness
- -*less* 216
- pre-
- -*wise* 289
- -ize
- *-ation* 3979

Modeling

- multiple linear regression in R using lm-function
- variable transformations
- trimming of datasets
- backwards exclusion of non-significant variables

Responses

- word duration
- affix duration
- base duration
- separate models for durations and frequencies: 54 models

Predictors

- > word frequency
- base frequency
- relative frequency

Covariates

- speech rate
- number of syllables
- biphone probability sum
- bigram frequency

Frequency and segmentability effects

affix	pre-			-ness			-ize		
duration	word	affix	base	word	affix	base	word	affix	base
word frequency									
base frequency									
relative frequency									
affix	-wise			-less			-ation		
affix duration	-wise	affix	base	-less word	affix	base	-ation	affix	base
		affix	base		affix	base		affix	base
duration		affix	base		affix	base		affix	base

p < .001 p < .001 expected direction unexpected direction

Are the differences related to ...

Prefixes vs. suffixes

affix	pre-								
duration	word	affix	base	word					
word frequency									
base frequency									
relative frequency									

word frequency										
base frequency										
relative frequency										

expected direction unexpected direction

Are the differences related to ... the type of affix?

Prefixes vs. suffixes

	pre-			-ness			-ize		
				word	affix	base	word	affix	base
word frequency									
base frequency									
relative frequency									

affix	-wise			-less			-ation		
duration	word	affix	base	word	affix	base	word	affix	base
word frequency									
base frequency									
relative frequency									

p < .001 p < .001

expected direction unexpected direction

Are the differences related to ... the type of affix?

Affix length

	pre-			-ness						
	word	affix	base	word						
word frequency										
base frequency										
relative frequency										
				-less						
				word	affix	base				
word frequency										
base frequency										
relative frequency										

Are the differences related to ...

the type of affix? the affix length?

p < .001

p < .001

expected direction

unexpected direction

Results

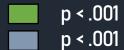
Affix length

word frequency										
base frequency										
relative frequency										

	-wise						-ation			
	word	affix	base				word	affix	base	
word frequency										
base frequency										
relative frequency										

p < .001 p < .001

expected direction unexpected direction


Are the differences related to ...

the type of affix? the affix length?

Manual resegmentation

affix	pre-			-ness			-ize		
duration	word	affix	base	word	affix	base	word	affix	base
word frequency									
base frequency									
relative frequency									
affix	-wise			-less			-ation		
duration	word	affix	base	word	affix	base	word	affix	base

word frequency

base frequency

relative frequency

expected direction unexpected direction

Are the differences related to ...

the type of affix? the affix length? the segmentation?

Results

Manual resegmentation

affix	pre-			-ness			-ize		
duration	word	affix	base	word	affix	base	word	affix	base
word frequency									
base frequency									
relative frequency									
affix	-wise			-less			-ation		
duration	word	affix	base	word	affix	base	word	affix	base
word frequency									
base frequency									

p < .001 p < .001

relative frequency

expected direction unexpected direction

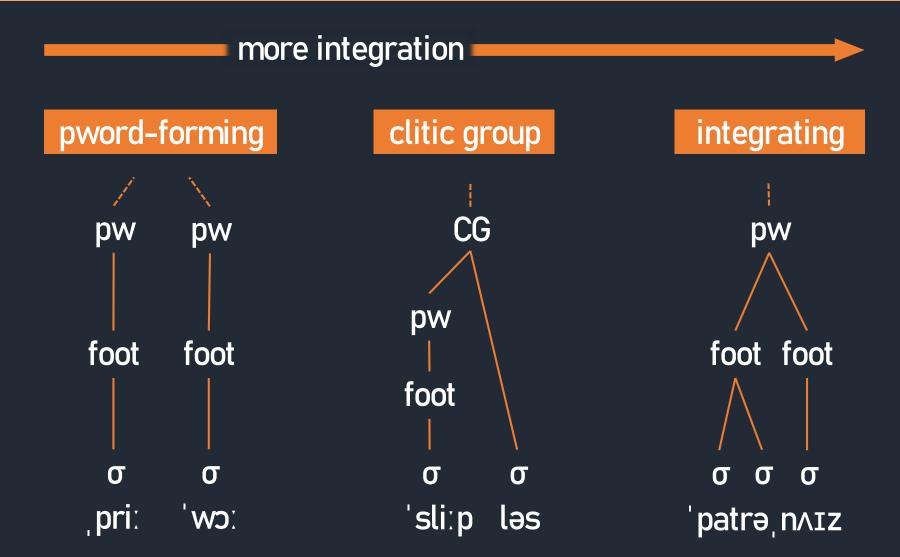
Are the differences related to ...

the type of affix? the affix length? the segmentation? ×

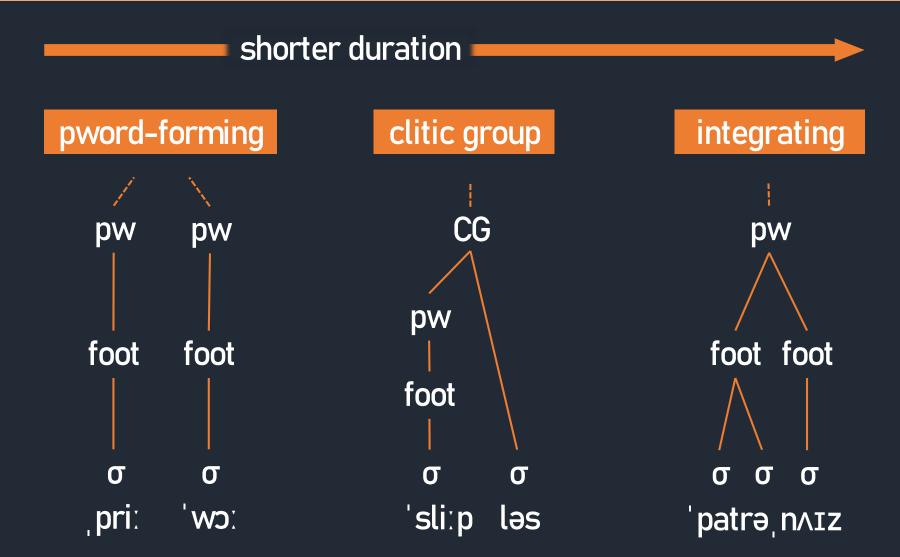
x

The prosodic hierarchy

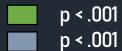
- U Phonological utterance
- IP Intonation phrase
- Phonological phrase
- (ω) Prosodic word
- Foot
- **o** Syllable


Some pword-diagnostics

- onset or coda conditions, LOI-violations
- > ambisyllabicity
- stress and relative prominence
- trisyllabic laxing, vowel reduction
- > minimal word requirements
- compositionality, type of base


Morpho-prosodic alignment

A morpheme cannot include multiple pwords, but a pword can include multiple morphemes.


Results

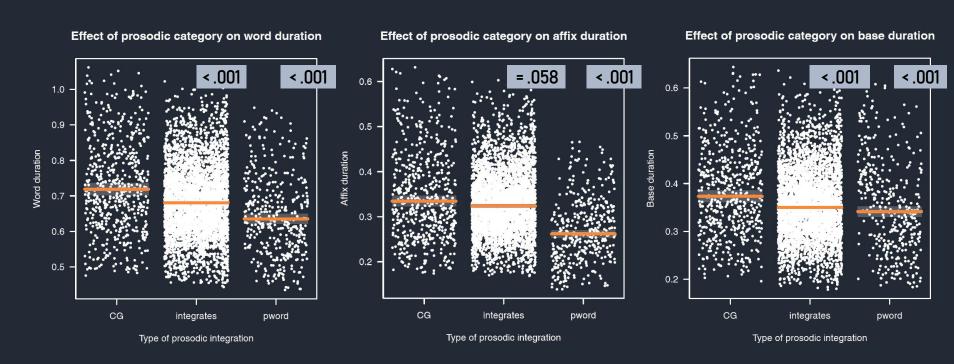
Type of prosodic integration

category	prosodic word			clitic group			integrates		
affix	pre-			-ness			-ize		
duration	word	affix	base	word	affix	base	word	affix	base
word frequency									
base frequency									
relative frequency									
affix	-wise			-less			-ation		
duration	word	affix	base	word	affix	base	word	affix	base

affix	-wise			-less			-ation		
duration	word	affix	base	word	affix	base	word	affix	base
word frequency									
base frequency									
relative frequency									

expected direction unexpected direction

Are the differences related to ...


the type of affix? the affix length? the segmentation? prosodic structure?

×

Meta-model including all affixes

- > Additional predictor: type of prosodic integration
- > Additional covariate: number of timing slots
- > N = 5450
- This does not support the predictions of pword integration.

Summary

In sum, we have a mixed picture.

- > Some results are in line with Caselli et al. 2016:
 - > All three frequency measures can independently predict duration.
 - > This is evidence for both types of storage in the mental lexicon, as well as for segmentability effects.
- However, there are also null effects, which require explanation.
 - > So far, we cannot attribute the differences to:
 - the domain of durational measurement (word, affix, base)
 - the type of affix (prefix, suffix)
 - the prosodic category (pword, clitic group, integrating).

Conclusion

Discussion

Our findings imply that ...

- morphological structure can at least partly influence the phonetic output.
- models that prohibit post-lexical access of morphological information (e.g. Kiparsky 1982, Levelt et al. 1999, Bermúdez-Otero 2018) should be revised.
- we need to investigate further factors that might cause frequency effects to surface or to not surface.

- > Ben Hedia, Sonia. 2018. Gemination and Degemination in English Affixation: Investigating the Interplay between Morphology, Phonology and Phonetics. Ph.D. dissertation: Heinrich-Heine-Universität Düsseldorf.
- > Bermúdez-Otero, Ricardo. 2018. Stratal Phonology. In S. J. Hannahs & Anna Bosch (eds.), Routledge handbook of phonological theory, 100–143. London: Routledge.
- > Boersma, Paul & David J. M. Weenik. 2014. Praat: Doing phonetics by computer (Version 5.4.04). Computer program. http://www.praat.org/.
- > Caselli, Naomi K, Michael K. Caselli, and Ariel M. Cohen-Goldberg. 2016. Inflected words in production: Evidence for a morphologically rich lexicon. *The Quarterly Journal of Experimental Psychology* 69.3: 432–454.

- Coleman, John, Ladan Baghai-Ravary, John Pybus & Sergio Grau. 2012. Audio BNC: The audio edition of the Spoken British National Corpus. Phonetics Laboratory, University of Oxford. http://www.phon.ox.ac.uk/AudioBNC.
- > Davies, Mark. 2008-. *The Corpus of Contemporary American English: 450 million words, 1990-present*. http://corpus.byu.edu/coca/.
- > Hay, Jennifer. 2001. Lexical frequency in morphology: Is everything relative? *Linguistics* 39.6: 1041–1070.
- Hay, Jennifer. 2003. Causes and consequences of word structure. New York, London: Routledge.
- Hay, Jennifer. 2007. The phonetics of un. In Judith Munat (ed.), Lexical creativity, texts and contexts, 39–57. Amsterdam & Philadelphia: John Benjamins.

- Hildebrandt, Kristine A. 2015. The prosodic word. In John R Taylor (ed.), The Oxford Handbook of the Word. Oxford: Oxford University Press.
- > Kiparsky, Paul. 1982. Lexical morphology and phonology. In In-Seok Yang (ed.), Linguistics in the morning calm: Selected papers from SICOL, 3-91. Seoul: Hanshin.
- Levelt, William J. M., Ardi Roelofs & Antje S. Meyer. 1999. A theory of lexical access in speech production. Behavioral and Brain Sciences 22.1: 1–38.
- Plag, Ingo & Sonia Ben Hedia. 2018. The phonetics of newly derived words: Testing the effect of morphological segmentability on affix duration. In Sabine Arndt-Lappe, Angelika Braun, Claudine Moulin & Esme Winter-Froemel (eds.), Expanding the Lexicon: Linguistic Innovation, Morphological Productivity, and Ludicity. Berlin & New York: de Gruyter Mouton.

- Raffelsiefen, Renate. 1999. Diagnostics for prosodic words revisited: The case of historically prefixed words in English. In Tracy A. Hall & Ursula Kleinhenz (eds.), Studies of the phonological word. 133–201. Amsterdam, Philadelphia: Benjamins.
- Raffelsiefen, Renate. 2007. Morphological word structure in English and Swedish: The evidence from prosody. In Geert Booij, Luca Ducceschi, Bernard Fradin, Ernesto Guevara, Angela Ralli & Sergio Scalise (eds.), *Online* Proceedings of the Fifth Mediterranean Morphology Meeting (MMM5), Fréjus, 15-18 September 2005, 209-268.
- > R Core Team 2017. *R: A language and environment for statistical computing.* R Foundation for Statistical Computing Vienna, Austria. http://www.R-project.org/.

> Vitevitch, Michael S., & Luce, Paul A. 2004. A web-based interface to calculate phonotactic probability for words and nonwords in English. *Behavior Research Methods, Instruments, and Computers* 36.3: 481–487.

