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SPOKEN MORPHOLOGY

Our research unit investigates the phonetics and phonology of morphologically 
complex words in English, German, and Maltese.

VAR

This project investigates morpho-phonetic variation in English.

SUB-PROJECT 1

My sub-project looks at the phonetics of derived words and compounds.

Is the morphological structure of complex words reflected in phonetic detail 
and if so, how?

see, e.g., Cho 2001, Hay 2007, Sugahara & Turk 2009, Cohen-Goldberg 2013, Lee-Kim et al. 2013, Blazej & Cohen 2015, Seyfarth et al. 2017
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segmentability

lexical strata

prosody

predictability
entropy

morphological family size
informativeness

frequency

SUB-PROJECT 1

My sub-project looks at the phonetics of derived words and compounds.

According to which morphological and other parameters does the phonetic detail 
of English derivatives differ, and under which circumstances?
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predictability
entropy

morphological family size
informativeness

frequency

SUB-PROJECT 1

My sub-project looks at the phonetics of derived words and compounds.
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How often does a linguistic unit 
occur in a language?

higher

Acoustic duration

How long do we pronounce 
linguistic units?
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Caselli et al. 2016

› inflectional suffixes -ing, -ed, and -s
› evidence for both whole-word storage and composition

› higher base frequency  shorter word duration
› higher word frequency  shorter word duration

Hay 2003, 2007

› segmentability effects for un- and -ly

Plag and Ben Hedia 2018

› segmentability effects for un- and dis-
› null effects for negative in-, locative in-, and -ly

Contradictory evidence:
Why do the frequency 
measures sometimes 
show and sometimes 
not show effects?

Caselli et al. 2016, Hay 2003, 2007, Plag and Ben Hedia 2018
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Hypothesis 1

Higher word frequency  shorter duration of word, base, and affix

Hypothesis 2

Higher base frequency  shorter duration of word, base, and affix

Hypothesis 3

Higher relative frequency  longer duration of word, base, and affix

≈ more segmentability
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Data collection

› AudioBNC
› Forced Alignment
› Praat textgrids
› manual cleaning 

of results
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› word duration

› affix duration

› base duration

Predictors

› word frequency

› base frequency

› relative frequency

Covariates

› speech rate

› number of syllables

› biphone probability sum

› bigram frequency

Modeling

› multiple linear regression 
in R using lm-function

› variable transformations
› trimming of datasets
› backwards exclusion of 

non-significant variables

› separate models for durations and 
frequencies: 81 models

Affixes

-ness
-less
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289
476
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Hildebrandt 2015, Raffelsiefen 1999, 2007
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Phonological utterance

Intonation phrase

Phonological phrase

Prosodic word

Foot

Syllable

U

IP

φ

ω

Σ

σ

The prosodic hierarchy

Hildebrandt 2015, Raffelsiefen 1999, 2007

Some pword-diagnostics

› onset or coda conditions, LOI-violations

› ambisyllabicity

› stress and relative prominence

› trisyllabic laxing, vowel reduction

› minimal word requirements

› compositionality, type of base

Morpho-prosodic alignment

› A morpheme cannot include multiple 
pwords, but a pword can include multiple 
morphemes.



Type of prosodic integration

Results

74 following Raffelsiefen 1999

pword-forming

ˌpriː ˈwɔː

σ σ

foot foot

pw pw



Type of prosodic integration

Results

75 following Raffelsiefen 1999

pword-forming clitic group

CG

pw

foot

σ

ˈsliːp ləs

σ

ˌpriː ˈwɔː

σ σ

foot foot

pw pw



Type of prosodic integration

Results

76 following Raffelsiefen 1999

pword-forming integratingclitic group

CG

pw

foot

σ

ˈsliːp ləs

σ

ˌpriː ˈwɔː ˈpatrəˌnʌɪz

σ σ σ σσ

foot foot

pw

foot foot

pw pw



Type of prosodic integration

Results

77 following Raffelsiefen 1999

more integration

pword-forming integratingclitic group

CG

pw

foot

σ

ˈsliːp ləs

σ

ˌpriː ˈwɔː ˈpatrəˌnʌɪz

σ σ σ σσ

foot foot

pw

foot foot

pw pw



Type of prosodic integration

Results

78 following Raffelsiefen 1999

shorter duration

pword-forming integratingclitic group

CG

pw

foot

σ

ˈsliːp ləs

σ

ˌpriː ˈwɔː ˈpatrəˌnʌɪz

σ σ σ σσ

foot foot

pw

foot foot

pw pw



Type of prosodic integration

Results

79

p < .001 expected direction
p < .001 unexpected direction

Are the differences related to … the type of affix? 

the affix length? 

the segmentation? 

prosodic structure?

duration word affix base word affix base word affix base

affix -ness -ize -ation

word frequency

base frequency

relative frequency

affix -less pre- -wise

word frequency

base frequency

relative frequency

affix dis- un- in-

word frequency

base frequency

relative frequency



duration word affix base word affix base word affix base

affix -ness -ize -ation

word frequency

base frequency

relative frequency

affix -less pre- -wise

word frequency

base frequency

relative frequency

affix dis- un- in-

word frequency

base frequency

relative frequency

Type of prosodic integration

Results

80

p < .001 expected direction
p < .001 unexpected direction

Are the differences related to … the type of affix? 

the affix length? 

the segmentation? 

prosodic structure?

prosodic
words



duration word affix base word affix base word affix base

affix -ness -ize -ation

word frequency

base frequency

relative frequency

affix -less pre- -wise

word frequency

base frequency

relative frequency

affix dis- un- in-

word frequency

base frequency

relative frequency

Type of prosodic integration

Results

81

p < .001 expected direction
p < .001 unexpected direction

Are the differences related to … the type of affix? 

the affix length? 

the segmentation? 

prosodic structure?

clitic 
groups



duration word affix base word affix base word affix base

affix -ness -ize -ation

word frequency

base frequency

relative frequency

affix -less pre- -wise

word frequency

base frequency

relative frequency

affix dis- un- in-

word frequency

base frequency

relative frequency

Type of prosodic integration

Results

82

p < .001 expected direction
p < .001 unexpected direction

Are the differences related to … the type of affix? 

the affix length? 

the segmentation? 

prosodic structure?

integrating



duration word affix base word affix base word affix base

affix -ness -ize -ation

word frequency

base frequency

relative frequency

affix -less pre- -wise

word frequency

base frequency

relative frequency

affix dis- un- in-

word frequency

base frequency

relative frequency

Type of prosodic integration

Results

83

p < .001 expected direction
p < .001 unexpected direction

Are the differences related to … the type of affix? 

the affix length? 

the segmentation? 

prosodic structure? 

integrating



Type of prosodic integration

Results

84

Meta-model including all affixes

› Additional predictor: type of prosodic integration

› Additional covariate: number of timing slots

› N = 7441



Type of prosodic integration

Results

85

Meta-model including all affixes

› Additional predictor: type of prosodic integration

› Additional covariate: number of timing slots

› N = 7441

= .411= .545



Type of prosodic integration

Results

86

Meta-model including all affixes

› Additional predictor: type of prosodic integration

› Additional covariate: number of timing slots

› N = 7441

= .411= .545 = .003 < .001



Type of prosodic integration

Results

87

Meta-model including all affixes

› Additional predictor: type of prosodic integration

› Additional covariate: number of timing slots

› N = 7441

< .001= .271= .411= .545 = .003 < .001



Type of prosodic integration

Results

88

› This does not support the predictions of pword integration.

Meta-model including all affixes

› Additional predictor: type of prosodic integration

› Additional covariate: number of timing slots

› N = 7441

< .001= .271= .411= .545 = .003 < .001



Informativity

Results

89

p < .001 expected direction
p < .001 unexpected direction

Are the differences related to … the type of affix? 

the affix length? 

the segmentation? 

prosodic structure? 

affix informativity?

duration word affix base word affix base word affix base

affix -ness -ize -ation

word frequency

base frequency

relative frequency

affix -less pre- -wise

word frequency

base frequency

relative frequency

affix dis- un- in-

word frequency

base frequency

relative frequency



Informativity

Results

90

Measured in two ways:



Informativity

Results

91

Measured in two ways:

Semantic information load score



Informativity

Results

92

Measured in two ways:

Semantic information load score

5-point Likert scales coded for:

› clearness of semantic meaning

› type of base: free vs. bound root

› semantic transparency

› productivity



Informativity

Results

93

Measured in two ways:

Semantic information load score

5-point Likert scales coded for:

› clearness of semantic meaning

› type of base: free vs. bound root

› semantic transparency

› productivity

Affix-specific semantic
segmentability hierarchy



Informativity

Results

94

Measured in two ways:

Semantic information load score

5-point Likert scales coded for:

› clearness of semantic meaning

› type of base: free vs. bound root

› semantic transparency

› productivity

Affix-specific semantic
segmentability hierarchy

H: The higher the semantic information 
load, the longer the duration.



Informativity

Results

95

Measured in two ways:

Semantic information load score

5-point Likert scales coded for:

› clearness of semantic meaning

› type of base: free vs. bound root

› semantic transparency

› productivity

Conditional affix probability Caff

Affix-specific semantic
segmentability hierarchy

H: The higher the semantic information 
load, the longer the duration.



Informativity

Results

96

Measured in two ways:

Semantic information load score

5-point Likert scales coded for:

› clearness of semantic meaning

› type of base: free vs. bound root

› semantic transparency

› productivity

Conditional affix probability Caff

Affix probability given preceding word:

SUFFIX EXAMPLE PREFIX EXAMPLE

A B A B C

random ize her pre- …

Affix-specific semantic
segmentability hierarchy

H: The higher the semantic information 
load, the longer the duration.



Informativity

Results

97

Measured in two ways:

Semantic information load score

5-point Likert scales coded for:

› clearness of semantic meaning

› type of base: free vs. bound root

› semantic transparency

› productivity

Conditional affix probability Caff

Affix probability given preceding word:

SUFFIX EXAMPLE PREFIX EXAMPLE

A B A B C

random ize her pre- …

Affix-specific semantic
segmentability hierarchy

H: The higher the semantic information 
load, the longer the duration.

𝐶𝑎𝑓𝑓 =
𝐹𝑟𝑒𝑞(𝐴𝐵)

𝐹𝑟𝑒𝑞(𝐴)



Informativity

Results

98

Measured in two ways:

Semantic information load score

5-point Likert scales coded for:
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› type of base: free vs. bound root

› semantic transparency

› productivity

Conditional affix probability Caff

Affix probability given preceding word:

SUFFIX EXAMPLE PREFIX EXAMPLE

A B A B C

random ize her pre- …

Affix-specific semantic
segmentability hierarchy

H: The higher the semantic information 
load, the longer the duration.

𝐶𝑎𝑓𝑓 =
𝐹𝑟𝑒𝑞(𝐴𝐵)

𝐹𝑟𝑒𝑞(𝐴)

H: The higher the conditional affix 
probability, the shorter the duration.
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› Additional predictor: semantic information load score

› Additional covariate: number of timing slots

› N = 7441
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In sum, we have a mixed picture.

› Some results are in line with Caselli et al. 2016:

› All three frequency measures can independently predict duration.

› This is evidence for both types of storage in the mental lexicon, as well as 
for segmentability effects.

› However, there are also null effects, which require explanation.

› So far, we cannot attribute the differences to:

› the domain of durational measurement (word, affix, base)

› the type of affix (prefix, suffix)

› the prosodic category (pword, clitic group, integrating)

› the informativity of the affix (information load, probability).
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Our findings imply that …

› morphological structure can at least partly influence the phonetic output.

› models that prohibit post-lexical access of morphological information (e.g. 
Kiparsky 1982, Levelt et al. 1999, Bermúdez-Otero 2018) should be revised.

› we need to investigate further factors that might cause frequency effects to 
surface or to not surface.

Kiparsky 1982, Levelt et al. 1999, Bermúdez-Otero 2018
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More corpus data

ONZE, Quakebox

Experimental data

Production experiments planned to be carried out at UC next year

Some things I have to do next or think about:

› Get familiar with the LaBB-CAT interface, query structure, and variables

› Learn how to write scripts that can deal with the new textgrid files

› Which affixes can I extract, depending on the token counts?

› Which subcorpora should I include?

Gordon et al. 2007, Walsh et al. 2013
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