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Motivation

Phonetic detail varies by morphological structure.

 Morphological information must still be present at the phonetic level.

Many models of the morphology-phonology interaction and of speech 

production do not allow for post-lexical access to morphological information 

(e.g., bracket erasure).

 They cannot account for such findings.

e.g., Chomsky & Halle 1968, Kiparsky 1982, Dell 1986,

Levelt et al. 1999, Roelofs & Ferreira 2019, Turk & Shattuck-Hufnagel 2020

e.g., Plag et al. 2020, Zuraw et al. 2020,

Tomaschek et al. 2019, Ben Hedia 2019, Plag & Ben Hedia 2018,

Plag et al. 2017, Seyfarth et al. 2017, Ben Hedia & Plag 2017, Hay 2007, 2003
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Linear discriminative learning

 end-to-end model directly mapping forms and meanings onto each other

 meanings are incrementally learned based on error-driven learning

 dynamic association strengths instead of fixed form-meaning units

cf. Baayen et al. 2019b

sign-based view discriminative view

/kæt/ /s/

‘cat’ ‘plural’

 In LDL, morphological effects on phonetic detail can be explained by its 

underlying principles of learning and experience.

/#kæ/

‘cat’ ‘plural’ ‘dog’ ‘walk’

/æts/ /ts#/
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How can LDL explore morphological structure?

e.g., Matthews 1991

We treat all words as

idiosyncratic.



We remain agnostic with regards 

to morphology, it’s semantics all 

the way down.

We take words to share 

morphological categories.



We categorize words according to 

phonological and semantic 

similarities.

Both perspectives assume that there are no fixed units below the word level 

which are separately represented in the lexicon.

 Let’s explore both options empirically!
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Research questions

1. How well can LDL account for the durational variation of derivatives?

2. What do effects of LDL-derived measures tell us about speech production?

3. What does LDL tell us about the role of morphological functions?
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Data

Coleman et al. 2012

AudioBNC

tokens types derivational functions

audio data 4530 363 DIS, NESS, LESS, ATION, IZE
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Data

Coleman et al. 2012, Ivens & Koslin 1991, Baayen et al. 2019b

AudioBNC

tokens types derivational functions

audio data 4530 363 DIS, NESS, LESS, ATION, IZE

training data 363

+ 4813

DIS, NESS, LESS, ATION, IZE,

AGAIN, AGENT, EE, ENCE, FUL, IC, 

INSTRUMENT, ISH, IST, IVE, LY, MENT, MIS, 

NOT, ORDINAL, OUS, OUT, SUB, UNDO, Y, 

MONOMORPHEMIC

AudioBNC

TASA

Baayen et 

al. 2019
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Matrices

C matrix

#k{ k{t {t# #h{ h{p

k{t 1 1 1 0 0

h{pInIs 0 0 0 1 1

w$k 0 0 0 0 0

lEm@n 0 0 0 0 0

S matrix
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Matrices

S matrixC matrix

#k{ k{t {t# #h{ h{p CAT HAPPINESS WALK LEMON

k{t 1 1 1 0 0 k{t 0.000000 -6.24e-05 4.71e-05 -0.000138

h{pInIs 0 0 0 1 1 h{pInIs -0.000110 0.0000000 0.000194 -2.20E-05

w$k 0 0 0 0 0 w$k 0.000304 -0.0002335 0.000000 -3.74E-05

lEm@n 0 0 0 0 0 lEm@n -7.28e-05 -2.41e-07 -2.68e-05 0.00000
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Matrices

learning algorithm in TASA

Baayen et al. 2019

752,130 sentences, 

10,719,386 tokens

S matrixC matrix

#k{ k{t {t# #h{ h{p CAT HAPPINESS WALK LEMON

k{t 1 1 1 0 0 k{t 0.000000 -6.24e-05 4.71e-05 -0.000138

h{pInIs 0 0 0 1 1 h{pInIs -0.000110 0.0000000 0.000194 -2.20E-05

w$k 0 0 0 0 0 w$k 0.000304 -0.0002335 0.000000 -3.74E-05

lEm@n 0 0 0 0 0 lEm@n -7.28e-05 -2.41e-07 -2.68e-05 0.00000

CAT HAPPINESS NESS WALK

CAT 0.000000 -6.24E-05 -0.0003179 4.71E-05

HAPPINESS -0.000110 0.00000000 0.032476 0.000194

NESS -0.000450 0.0346008 0.000000 -0.0001

WALK 0.000304 -0.0002335 -9.76E-06 0.000000

LEMON -7.28E-05 -2.41E-07 -0.0001247 -2.68E-05

lexome-to-lexome matrix

Baayen et al. 2019b
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Two networks

Morphology NetworkIdiosyncratic Network

ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠 + 𝑁𝐸𝑆𝑆

Vectors do contain explicit 

information about morphological 

function

ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠

Vectors do not contain explicit 

information about morphological 

function
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Comprehension and production mapping

C
forms

S
meanings

F

comprehension

G

production
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Comprehension and production mapping

predicting meanings

መ𝑆 = 𝐶𝐹

predicting forms

መ𝐶 = 𝑆𝐺
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Modeling durations

linear models and mixed effects models with random intercept for word type

response variable

 DURATION DIFFERENCE

residuals of a linear model OBSERVED DURATION ~ BASELINE DURATION

predictors

 MEAN WORD SUPPORT

 PATH ENTROPIES

 SEMANTIC VECTOR LENGTH

 SEMANTIC DENSITY

 TARGET CORRELATION

 SPEECH RATE
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Network accuracy

Morphology NetworkIdiosyncratic Network

82 %

99 %

comprehension 81 %

production 99 %
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Explained variance of variables predicting duration

Morphology NetworkIdiosyncratic Network

.37

.36

R2 adj. lm .38

R2 mar. lmer .37

traditional model with

WORD FREQUENCY, RELATIVE FREQUENCY, BIGRAM

FREQUENCY, BIPHONE PROBABILITY, AFFIX, SPEECH RATE

R2 adj. lm .37

R2 mar. lmer .37
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MEAN WORD SUPPORT

𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑛𝑜𝑑𝑒𝑠

can represent

articulatory certainty

#l$

l$l

$l@

l@s

@s#

0.2

1

0.5

0.7

0.9
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MEAN WORD SUPPORT

Morphology NetworkIdiosyncratic Network

lms

lmers
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PATH ENTROPIES

Shannon entropy

of path supports

can represent

articulatory uncertainty
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PATH ENTROPIES

Morphology NetworkIdiosyncratic Network

lms

lmers
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SEMANTIC DENSITY

mean correlation of Ƹ𝑠
with top 8 neighbors

can represent

semantic transparency



lmers not significant
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SEMANTIC DENSITY

Morphology NetworkIdiosyncratic Network

lms
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SEMANTIC VECTOR LENGTH

L1 distance of Ƹ𝑠

can represent

activation diversity or polysemy



lms not significant

Results
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SEMANTIC VECTOR LENGTH

Morphology NetworkIdiosyncratic Network

lmers
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1. How well can LDL account for the durational

variation of derivatives?

LDL-derived variables are successful in predicting derivative durations.

 This is further evidence that error-driven, discriminative learning 

models are a promising approach to speech production where 

morpho-phonetic effects are not unexpected.

cf., e.g., Baayen et al. 2019, Chuang et al. 2020,

Tomaschek et al. 2019, Tucker et al. 2019
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2. What do effects of LDL-derived measures tell us

about speech production?

Higher certainty is associated with lengthening,

higher uncertainty is associated with shortening.

Higher semantic transparency can be associated

with lengthening and with shortening.

There are different expectations in the literature.

Higher semantic activation diversity

is associated with shortening.

cf. Tomaschek et al. 2019,

Kuperman et al. 2007,

Cohen 2014, Cohen 2015,

Tucker et al. 2019,

this study

cf. Hay 2003, 2007,

Plag & Ben Hedia 2018,

Zuraw et al. 2020;

but cf. Tucker et al. 2019,

Schreuder & Baayen 1997,

Plag & Baayen 2009

cf. Tucker et al. 2019
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3. What does LDL tell us about the role

of morphological functions?

Differences between morphological functions

can emerge even from the Idiosyncratic Network

without morphological function vectors.

Some of these differences mirror traditional classifications from the 

literature.

 Semantic density is higher for words with NESS, LESS and DIS than for 

words with ATION (cf. transparency of -ness, -less, and dis- vs. -ation).

 Semantic vector length was highest for IZE and ATION words

(cf. semantics of -ize and -ation vs. -less, dis-, and -ness).
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Future directions

We think it could be worthwhile to…

 analyze durations for a larger dataset with more derivational functions.

 train lexome-to-lexome vectors without coding for function lexomes in the 

first place.

 explore how to build vectors for words with multiple derivational functions.
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Takeaways

 The phonetics of derived words can be modeled successfully with an 

approach based on error-driven learning, linear discriminative learning.

 Higher articulatory certainty is associated with lengthening, higher 

activation diversity with shortening.

 Differences between morphological functions are successfully captured 

by the semantic vectors in the network.



Thank you!
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Data

Types and tokens before excluding outliers

Tokens Types

DIS 233 35

NESS 344 49

LESS 145 31

ATION 3403 209

IZE 405 39
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Segmentation

Example of a token of happiness
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Segmentation

Example of a token of sadness
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Graph-based

triphone sequencing
#l$

l$l

$l@

l@s

@s#
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Three networks

Morphology NetworkIdiosyncratic Network

ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠 + 𝑁𝐸𝑆𝑆

Vectors contain:

idiosyncratic 

information about 

derivative,

information about 

morphological 

function

ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠

Vectors contain:

idiosyncratic 

information about 

derivative,

no information about 

morphological 

function

Base Network

ℎ𝑎𝑝𝑝𝑦 + 𝑁𝐸𝑆𝑆

Vectors contain:

no idiosyncratic 

information about 

derivative,

information about 

morphological 

function
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Network accuracy

Morphology NetworkIdiosyncratic Network

82 %

99 %

comprehension 81 %

production 99 %

Base Network

83 %

98 %

Similarity of semantic matrices

Morphology NetworkIdiosyncratic Network

Base Network

Idiosyncratic Network Base Network

Morphology Network

r = .08

r = .1

r = .9
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Explained variance of variables predicting duration

Morphology NetworkIdiosyncratic Network Base Network

.37

.36

R2 adj. lm .38

R2 mar. lmer .37

.36

.35

traditional model with

WORD FREQUENCY, RELATIVE FREQUENCY, BIGRAM

FREQUENCY, BIPHONE PROBABILITY, AFFIX, SPEECH RATE

R2 adj. lm .37

R2 mar. lmer .37
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MEAN WORD SUPPORT

𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑛𝑜𝑑𝑒𝑠

can represent

articulatory certainty

#l$

l$l

$l@

l@s

@s#

0.2

1

0.5

0.7

0.9
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PATH ENTROPIES

Shannon entropy

of path supports

can represent

articulatory uncertainty

#l$

l$l

$l@

l@s

@s#
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0.7
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MEAN WORD SUPPORT

Morphology NetworkIdiosyncratic Network Base Network

lms

lmers
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MEAN WORD SUPPORT

Morphology NetworkIdiosyncratic Network Base Network
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PATH ENTROPIES

Morphology NetworkIdiosyncratic Network Base Network

lms

lmers
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PATH ENTROPIES

Morphology NetworkIdiosyncratic Network Base Network



lmers not significant
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SEMANTIC DENSITY lms

Morphology NetworkIdiosyncratic Network Base Network



lms not significant
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SEMANTIC VECTOR LENGTH lmers

Morphology NetworkIdiosyncratic Network Base Network
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Standard linear regression models

Idiosyncratic Network model Morphology Network model Base Network model

Estimate SE Estimate SE Estimate SE

Intercept 0.216901 0.026210 *** 0.090708 0.025887 *** 0.408246 0.029999 ***

MEAN WORD SUPPORT 0.170726 0.023507 *** 0.250262 0.020700 *** 0.050723 0.012716 ***

PATH ENTROPIES -0.008688 0.002242 *** -0.008442   0.002309 *** -0.009342 0.002259 ***

SEMANTIC DENSITY -0.043545 0.008925 *** 0.033868   0.012372 ** -0.093906 0.025844 ***

SPEECH RATE -0.058757 0.001148 *** -0.058602 0.001159 *** -0.058702       0.001171 ***

N 4448 4456 4456

R2 adjusted 0.3778 0.3742 0.3623



Appendix

2022-08-03 Stein, Plag Using LDL to model the acoustic duration of English derived words EDLL 2022 62

Mixed-effects regression models

Idiosyncratic Network model Morphology Network model Base Network model

Estimate SE Estimate SE Estimate SE

Intercept 1.328e-01 4.601e-02 ** 2.146e-01 6.024e-02 *** 2.595e-01 2.510e-02 ***

MEAN WORD SUPPORT 2.722e-01 4.600e-02 *** 2.535e-01 4.572e-02 *** 1.211e-01 2.654e-02 ***

PATH ENTROPIES -1.173e-02 5.625e-03 * -1.163e-02 5.633e-03 *

SEMANTIC VECTOR LENGTH -1.606e-02 6.860e-03 * -3.294e-02 1.550e-02 *

SPEECH RATE -5.944e-02 1.116e-03 *** -5.937e-02 1.116e-03 *** -5.936e-02 1.117e-03 ***

N 4357 4358 4357

R2 marginal 0.3690016 0.3638608 0.3487138
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Traditional models

Traditional standard regression model Traditional mixed-effects model

Estimate SE Estimate SE

Intercept 3.888e-01 8.345e-03 *** 4.159e-01 1.106e-02 ***

WORD FREQUENCY 4.970e-08 3.764e-08 -2.608e-07 2.328e-07

RELATIVE FREQUENCY -2.136e-05 4.166e-05 -1.446e-05 8.931e-05

BIGRAM FREQUENCY -6.542e-07 6.293e-07 7.978e-07 6.382e-07

MEAN BIPHONE PROBABILITY -5.188e+00 8.872e-01 *** -7.167e+00 1.545e+00 ***

AFFIX ation

dis 8.145e-03 6.700e-03 -1.405e-03 1.438e-02

ize -2.316e-02 5.251e-03 *** -1.491e-02 1.377e-02

less -5.749e-02 8.226e-03 *** -7.569e-02 1.524e-02 ***

ness -5.473e-02 5.700e-03 *** -3.630e-02 1.295e-02 **

SPEECH RATE -5.893e-02 1.163e-03 *** -5.986e-02 1.116e-03 ***

N 4450 4354

R2 adjusted/marginal 0.3731 0.3705799

R2 conditional 0.5344904
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Relative importance of variables

Relative importance metrics (lmg)

Idiosyncratic Network Morphology Network Base Network Traditional model

lm lmer lm lmer lm lmer lm lmer

MEAN WORD SUPPORT 0.0089 0.1649 0.0148 0.0956 0.0025 0.1641

PATH ENTROPIES 0.0023 0.0031 0.0023 0.0017 0.0030

SEMANTIC DENSITY 0.0067 0.0020 0.0014

SEMANTIC VECTOR LENGTH 0.0064 0.0399

SPEECH RATE 0.3605 0.1946 0.3556 0.2266 0.3559 0.1845 0.3561 0.2140

WORD FREQUENCY 0.0007 0.0065

RELATIVE FREQUENCY 0.0006 0.0044

BIGRAM FREQUENCY 0.0007 0.0034

MEAN BIPHONE PROBABILITY 0.0025 0.1178

AFFIX 0.0136 0.0246

total variance explained 0.3778 0.3690 0.3742 0.3639 0.3623 0.3487 0.3731 0.3706
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Type count of top 8 neighbors
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Extract from closest semantic neighbors of DIS words

Word Phones Neighbors

Idiosyncratic Network

disarm dIs,m mayday quint wham mambo cranky nosy blankly

disband dIsb{nd mayday quint blankly wham mambo cranky pippin

discard dIsk,d disarray distaste discredit disgrace discomfort awl disobey

discharge dIsJ,= dislike dishonest distrust disagree discomfort disgrace discontent

disclose dIskl5z mayday quint mambo wham blankly nosy shit

discount dIsk6nt dishonest discomfort disgrace discontent distrust distaste disguise

discourse dIsk$s disarray distaste discredit disgrace discomfort disparity dislodge

disease dIziz discover disappear disorder discharge dislike discount disagree

disgrace dIsgr1s distaste discomfort disarray discredit disobey dislodge disparity

Morphology Network

disarm dIs,m disunity disown disband disarray discredit disparity disobey

disband dIsb{nd disunity disown disarm disarray discredit disobey disparity

discard dIsk,d discomfort disgrace distaste dishonest disarray discontent dislodge

discharge dIsJ,= dislike dishonest distrust disagree discomfort disgrace discontent

disclose dIskl5z disarray disown disarm discredit disunity disband disparity

discount dIsk6nt discomfort dishonest disgrace dislike disagree distrust disguise

discourse dIsk$s discomfort disgrace distaste dishonest discontent disarray disregard

disease dIziz discover disappear disorder discharge dislike discount disagree

disgrace dIsgr1s distaste discomfort disarray discredit disobey dislodge disparity

Base Network

disarm dIs,m disguise disparity disgust disarray dislike disobedience displace

disband dIsb{nd disguise disparity disarray disgust dislike displace disobedience

discard dIsk,d disguise disparity disgust disarray disobedience dislike displace

discharge dIsJ,= disguise disparity disgust disarray dislike disobedience dishonest

disclose dIskl5z disguise disparity disgust disarray dislike disobedience dislodge

discount dIsk6nt disguise disparity disgust disarray disobedience dislike dishonest

discourse dIsk$s disguise disparity disgust disarray displace disobedience dishonest

disease dIziz disguise disparity disgust disarray disobedience dislike dishonest

disgrace dIsgr1s disguise disparity disgust disarray dislike disobedience dishonest




