Seminar session 2

Gemination and Degemination in English Affixation

Lexical Strata, Variability, and Phonetic Evidence

Collaborators

Sonia Ben Hedia (U Düsseldorf), Gero Kunter (U Düsseldorf)

Funding

Strategischer Forschungsförderfonds Heinrich-Heine-Universität Düsseldorf Deutsche Forschungsgemeinschaft

- Grant PL151/8-1 'Morpho-phonetic Variation in English'
- Grant PL151/7-1 'FOR 2737 Spoken Morphology: Central Project'

Morpho-phonology as we know it

- Morpho-phonological alternations are categorical but may have lexical exceptions.
- The formal level of representation of morphemes is phonological in nature.
- Post-lexical phonology and phonetics have no access to lexical information.

Problems

- Morpho-phonological alternations are more variable than previously assumed, and governed by unexpected factors
 - Stress shift (Bauer, Lieber & Plag 2013 on -able)
 - Stress preservation (Collie 2008, relative frequency as a proxy for morphological segmentability)
- Subphonemic detail may reflect morphological information
 - Free vs. bound stems (Kemps et al. 2005, Blazej & Cohen-Goldberg 2015)
 - Paradigmatic enhancement (Cohen 2014, Kuperman et al. 2005)
- Serious implications for theories of morpho-phonology (Plag 2014)
 - o Exception vs. rule
 - Lexical vs. post-lexical phonology (in linguistic theory, and in speech production models)

Problems

- Morpho-phonological alternations are more variable than previously assumed, and governed by unexpected factors
 - Stress shift (Bauer, Lieber & Plag 2013 on -able)
 - Stress preservation (Collie 2008, relative frequency as a proxy for morphological segmentability)
- Subphonemic detail may reflect morphological information
 - Free vs. bound stems (Kemps et al. 2005, Blazej & Cohen-Goldberg 2015)
 - Different S morphemes (Plag, Homann & Kunter 2015)
- Serious implications for theories of morpho-phonology (Plag 2014)
 - o Exception vs. rule
 - Lexical vs. post-lexical phonology (in linguistic theory, and in speech production models)

Consonant gemination

- Length contrast of consonants
- Phonetic correlate: Gemminate has longer duration than singleton (relative or absolute duration)

Italian: *cane* 'dog' *canne* 'canes'

- Arabic: kasara 'he broke' kassara ('he smashed')
- English: some more, room mate, unknown only across morphemic boundaries 'fake gemination', 'morphological gemination' 'gemination'

Views on gemination in English

- "Double consonants are frequently found in English, especially at word junction: wholly (as said by many), unknown, book-case, this Sunday." (Abercrombie1967:82)
- "geminate consonants occur in English only at morpheme boundaries: nighttime, bookcase, solely, non-null." (Trask 1996:154)
- "In a more formal, careful speech style, some native speakers may geminate some words, as Trask (*op. cit.*) notes. Some of these for some native speakers might, in fact, be spelling pronunciations. Thus, a word such as *unknown* may actually be pronounced by some with a geminated [nn] due to the pronunciation of its orthographic representation. A geminated [nn] in *unknown*, however, sounds awkward in my own speech, but there is always the possibility of a pragmatically based, purposeful gemination, i.e., for special effect." (Kaye 2005)
- Dictionaries vary a great deal w.r.t. the transcription of pertinent words with one or two phonetic symbols (see Kaye 2005 for illustration)

Views on gemination in English

Table 9. Geminate consonants over morphological
boundaries

Geminate	In a compound	In affixation
bb	deadbeat	mid day.
dd kk	sack cloth	mid-day
11	full-length	goalless, cruelly
mm	film-maker	alignment, in-mate, embalmment
nn	grand-niece	unknown, drunkenness
pp	lamp-post	step-parent
rr^{20}	ear-ring	fore-runner
SS	cross-section	dissatisfaction, ex-service
tt	test-tube	

Gemination with -ly

variable gemination: dully, wholly

(http://dict.leo.org, Wells 2013)

Statements about un- and in-

Mohanan (1986:18):

degemination: *innavigable* and *innumerable* (level 1) gemination: *unknown*, *unnatural*, *suddenness*, *fineness*, *soulless*, *guileless*. (level 2)

Gimson's Pronunciation of English (2014):

"In general such prefixes result in a doubled consonant when the prefix-final and the stem-initial consonants are identical, e.g. *unnecessary* is pronounced with a double length [n:]. (This rule does not apply to *in-* and its variants, so for example *illogical* is pronounced with only a single /l/)." (p. 248)

Cohen-Goldberg (2013: 1055f):

"Similarly in English, although geminates are banned from monomorphemic words (*spaghe[tt]i) and words containing less productive affixes (e.g.in-: i[n]umerable), they are allowed in words containing more productive affixes and compounds (e.g. un-: u[nn]ecessary; boo[kk]eeper)."

Hypotheses

a difference between lento speech (formal) and allegro speech (informal) •

(Kaye 2005)

- *un*-geminates (e.g. Cruttenden & Gimson 2014, Cohen-Goldberg 2014, Kiparsky 1982, Mohanan 1986)
- *in-* degeminates ۲

(e.g. Cruttenden & Gimson 2014, Cohen-Goldberg 2014, Kiparsky 1982, Mohanan 1986)

- -ly ۲
 - ... is variable (*stalely* vs. *fully*, Bauer 2001, Bauer, Lieber & Plag 2013) Ο
 - ... geminates (Lexical Phonology: level 2 affix) Ο
- General theoretical assumptions by morpho-phonologists •
 - Degemination is affix- or stratum-dependent Ο
 - Degemination is a categorical morpho-phonological process with some Ο lexical exceptions 10

Predictions

	Level 1	Level 2
Morphological Process	in + numerous	un + natural sole + ly
Phonological Process	i/n/umerous	u/nn/atural so/II/y
Phonetic Outcome	<i>i</i> [n] <i>umerous</i>	u[n:]atural so[l:]y
[Degemination	Gemination

Empirical evidence?

- Only two studies empirically investigated *in-* and *un-* in English
- Kaye (2005): experiment with very few types, spoken in isolation

in- immature – mature

gemination (but somewhat variable by speaker)

un- unaimed – unnamed – named gemination

Empirical evidence?

Oh and Redford (2013)

- Experimental study with four types for each prefix immovable, immoral, immemorial, immeasured unnoticed, unnamed, unnerve, unnail
- Comparison of durations with (assumed) phonological singletons with orthographic doubles (e.g. *immunity, immigrational*)

Results

both *im*- and *un*- geminate, but *un*- more than *im*-

Problems

- Small set of types, presented orthographically, read speech
- A priori classification of stimuli as geminates or non-geminates
- Stimuli only spoken in carrier sentence 'I said ____ again', asking for normal vs. careful speaking style
- Morphological implications not clear

Empirical evidence?

• No empirical study of -*ly*

This study

- What are the facts?
- What determines (de-)gemination at morphological boundaries?
- Three affixes: *un-, in-, -ly*
- Diagnostics: Acoustic duration
- Data: Natural conversational speech

- Switchboard Corpus (Godfrey & Holliman 1997)
 - 2430 two sided phone conversations among North American speakers, 240 hours of speech.
 - 3 million word tokens
- Sample of *un-*, *in-* and -*ly-*affixed words with a double or a single (orthograhic) consonant at the morphological boundary
- 'affixed': The base must be attested outside the derivative with a similar meaning (*unfair, implicit explicit, innocent*)
- For each affix we sampled up to 160 words per category
- only one token of a given type by a single speaker
- For the prefix *in* only the allomorph /Im/ was investigated (with <nn> only *innate*, *innocent* and *innovate* (with some derivatives) are attested in the corpus)

- Manual segmentation and acoustic measurements in Praat (Boersma & Weenink 2014)
- Go to PRAAT!

- Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor
- Coding of pertinent covariates:
 - Preceding Segment Duration
 - Preceding Segment
 - Following segment
 - Speech Rate
 - Prosodic Structure
 - Syllabicity
 - Word Form Frequency
 - Relative Frequency
 - Affix
 - Semantic Transparency

- Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor
- Coding of pertinent covariates:
 - Preceding Segment Duration
 - Preceding Segment
 - Following segment
 - Speech Rate
 - Position in utterance
 - Prosodic Structure
 - Syllabicity
 - Word Form Frequency
 - Relative Frequency
 - Affix
 - Semantic Transparency

Gemination may also affect the vowel preceding the geminated segment (e.g. Ridouane 2010, Miller 1987, Oh and Redford 2011)

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

• Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

Coarticulation effects

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

• Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

Coarticulation effects

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

• Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

Speech rate directly influences the duration of a given segment.

Number of segments

word duration

- Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor
- Coding of pertinent covariates:
 - Preceding Segment Duration
 - Preceding Segment
 - Following segment
 - Speech Rate
 - Position in utterance
 - Prosodic Structure
 - Syllabicity
 - Word Form Frequency
 - Relative Frequency
 - Affix
 - Semantic Transparency

Final lengthening effect

mid, end, before pause

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

• Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure <
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

- stressed vs.
 unstressed affix
- adjacent / nonadjacent to a stress syllable

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

• Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

• Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

More frequent words are produced faster

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

• Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

Measure of gradient morphological complexity

The more frequent the derivative visà-vis the base, the less complex the word

happyness - happy discernment - discernment

government - govern insane - sane

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

 Statistical Analysis: Multiple regression with duration as dependent variable and number of consonants (single vs. double) as crucial predictor

• Coding of pertinent covariates:

- Preceding Segment Duration
- Preceding Segment
- Following segment
- Speech Rate
- Position in utterance
- Prosodic Structure
- Syllabicity
- Word Form Frequency
- Relative Frequency
- Affix
- Semantic Transparency

transparent:

Affix + Base = Derivative *im + possible* = *impossible* NEG + 'possible' = 'not possible'

opaque:

im + *mediately* ≠ 'at once'

Overview of the data

	Double Consonant	Single Consonant	Total per affix
un-	22	136	158
in-	89	67	156
-ly	81	75	156

Results: Overview

stress pattern

type of affix

stress pattern

stress pattern

type of affix

Additional covariate: Syllabicity (ment[1]y vs. ment[al]y, odd[1]y)

Summary

- We find morpho-phonological / morpho-phonetic effects, not simple phonetic effects of speech tempo
- *un-* geminates: no surprise
- *in-* geminates: somewhat unexpected result
 - Effect of AFFIX: homophonous locative and negative *in-* prefixes are acoustically different
- *-ly* degeminates: unexpected result
 - effect of RELATIVE FREQUENCY: morphological segmentability influences phonetic implementation

Implications

- Empirical facts contradict received wisdom for *in* and -*ly*
- Lexical Phonology makes wrong empirical predictions
- Morphological information is directly reflected in the speech signal
 - *in*-: Homophonous affixes exhibit different acoustic properties (cf. Plag, Homann & Kunter 2015 on S)
 - -ly: Degree of morphological separability correlates with acoustic duration (cf. Hay 2007, Collie 2008)
- Challenges models of lexical phonology and models of speech production that state that post-lexical phonology has no access to morphological information (e.g. Lexical Phonology, Levelt, Roelofs & Meyer 1999)

Thank you very much for your attention!

References

Bauer, L. (2001). *Morphological productivity*. *Cambridge studies in linguistics: Vol. 95*. Cambridge England, New York: Cambridge University Press.

Bauer, L., Lieber, R., & Plag, I. (2013). The Oxfort reference guide to english morphology. Oxford Linguistics. Oxford: Oxford University Press.

Blazej, L. J., & Cohen-Goldberg, A. M. (2015). Can we hear morphological complexity before words are complex? *Journal of experimental psychology. Human perception and performance*, 41(1), 50–68.

Boersma, P. & Weenink, D. (2014). Praat: doing phonetics by computer. Retrieved from http://www.praat.org/

Cohen-Goldberg, Ariel M. (2013): Towards a theory of multimorphemic word production: The heterogeneity of processing hypothesis. In: Language and Cognitive Processes 28 (7), S. 1036–1064.

Collie, S. (2008). English stress preservation: the case for 'fake cyclicity'. English Language and Linguistics, 12(03), 505–532.

Cruttenden, Alan; Gimson, Alfred Charles (2014): Gimson's pronunciation of English. 8th ed. London, New York: Routledge.

Giegerich, H. J. (1999). Lexical Strata in English: Morphological Causes, Phonological Effects: Cambridge University Press.

Godfrey, John J.; Holliman, Edward (1997): Switchboard-1 Release 2. [Philadelphia, Pa.]: Linguistic Data Consortium.

Hay, J. (2007). The phonetics of 'un'. In J. Munat (Ed.), Studies in functional and structural linguistics: v. 58. Lexical creativity, texts and contexts (pp. 39–57). Amsterdam, Philadelphia: J. Benjamins Pub. Co.

Kaye, A. S. (2005). Gemination in English. English Today, 21(2), 43–55.

Kemps, Rachel J J K, Ernestus, M., Schreuder, R., & Baayen, R. H. (2005). Prosodic cues for morphological complexity: the case of Dutch plural nouns. *Memory & cognition*, 33(3), 430–446.

Kiparsky, Paul (1982): Lexical morphology and phonology. In: Linguistics in the morning calm. Selected papers from SICOL-1981. Unter Mitarbeit von The linguistic society of Korea. Seoul, Korea: Hanshin Pub. Co.

Mohanan, K. P. (1986). The theory of lexical phonology. Studies in natural language and linguistic theory: [v. 6]. Dordrecht, Boston, Norwell, MA: D. Reidel Pub. Co.; Sold and distributed in the U.S.A. and Canada by Kluwer Academic.

Oh, Grace E.; Redford, Melissa A. (2012): The production and phonetic representation of fake geminates in English. In: Journal of Phonetics 40 (1), S. 82–91.

Plag, I. (2014). Phonological and phonetic variability in complex words: An uncharted territory. *Italian Journal of Linguistics / Rivista di Linguistica*.

Plag, I., Homann, J., & Kunter, G. (2015). Homophony and morphology: The acoustics of word-final S in English. *Journal of Linguistics*.

R Development Core Team. (2014). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical 45 Computing. Retrieved from http://www.r-project.org

un-model

```
# Call:
  Im(formula = bc ~ TransitionType + LocSpeech, data = unComplex2)
#
#
# Residuals:
# Min
          1Q Median
                           3Q
                                 Max
#-0.081237-0.027028-0.000937 0.025328 0.096961
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                  0.581989 0.014676 39.655 < 2e-16 ***
# TransitionTypesingle-C -0.049389 0.009505 -5.196 6.59e-07 ***
  TransitionTypesingle-V -0.099885 0.009641 -10.360 < 2e-16 ***
#
                    -0.007646 0.001063 -7.196 2.83e-11 ***
  LocSpeech
#
#
  ---
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
#
# Residual standard error: 0.03788 on 149 degrees of freedom
# Multiple R-squared: 0.6011, Adjusted R-squared: 0.5931
# F-statistic: 74.84 on 3 and 149 DF, p-value: < 2.2e-16
```

im-model

```
Im(formula = bc ~ NoCons + LocSpeech + StressPattern + Affix,
#
    data = imComplex4)
#
#
# Residuals:
# Min
          1Q Median
                           3Q
                                 Max
#-0.081827-0.023172-0.002205 0.023101 0.083318
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                  0.2856713 0.0112978 25.286 < 2e-16 ***
                      0.0442330 0.0064822 6.824 2.08e-10 ***
# NoConsdouble
                   -0.0032078 0.0007413 -4.327 2.76e-05 ***
# LocSpeech
# StressPatternstr-unstr -0.0344743 0.0071455 -4.825 3.44e-06 ***
 AffixinNeg
                   0.0196406 0.0069752 2.816 0.00553 **
#
#
  ---
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
#
# Residual standard error: 0.0325 on 149 degrees of freedom
# Multiple R-squared: 0.5392, Adjusted R-squared: 0.5268
# F-statistic: 43.58 on 4 and 149 DF, p-value: < 2.2e-16
```

-ly-model

```
Im(formula = AbsDurCon ~ NoCons + logRelFreq + PrecSegVC + LocSpeech +
#
     Syllabic, data = lyComplex2)
#
#
# Residuals:
# Min
          1Q Median
                          3Q
                                Max
#-0.046194-0.013208-0.001831 0.011909 0.045429
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept)
                 0.0799558 0.0086899 9.201 3.41e-16 ***
# NoConsdouble
                     -0.0074318 0.0056623 -1.313 0.191410
# logRelFreq
                 -0.0014775 0.0006016 -2.456 0.015219 *
                   0.0168499 0.0047635 3.537 0.000542 ***
# PrecSegVCV
# LocSpeech
                  -0.0022602 0.0004393 -5.145 8.49e-07 ***
  Syllabicnon-syllabic -0.0138244 0.0068922 -2.006 0.046726 *
#
# ----
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
#
# Residual standard error: 0.01876 on 146 degrees of freedom
# Multiple R-squared: 0.2435, Adjusted R-squared: 0.2176
```

```
# F-statistic: 9.398 on 5 and 146 DF, p-value: 8.768e-08
```

Types

	Doubles	Singles
un-	5	94
in-	17	65
-ly	76	72