Gemination and Degemination in English Prefixation: Lexical Strata, Semantics, and Phonetic Evidence

Sonia Ben Hedia

Heinrich-Heine-Universität Düsseldorf

The 22nd Annual University of Texas at Arlington Student Conference in Linguistics & TESOL, 19th and 20th of February 2015

Morphological structure and phonetic detail

Claim:

 Phonetic detail entails information about morphological structure

Morphological Segmentability Hypothesis (Hay 2003)

 Strength of morphological boundary depends on 'decomposability' and is mirrored in phonetic detail

Morphological structure and phonetic detail

Decomposability:

Highly decomposable	Less decomposable		
 Semantically transparent Phonologically transparent Easy to segment 	Semantically opaquePhonologically opaqueDifficult to segment		
happiness discernment	vs. business vs. aovernment		

Morphological structure and phonetic detail

- Hay (2007): Gradient decomposability of affixed forms is reflected in phonetic detail
 - Decomposability measured in relative frequency (whole word frequency : base frequency)
 - The prefix *un* is pronounced longer when part of more decomposable word
- → Other phonetic phenomena could also give us an insight about morphological structure

A test case: Gemination

• Due to affixational processes : sequence of two identical consonants at morphological boundaries, e.g.

un#natural

im#mature

- What happens on the phonetic level?
 - Longer duration than a singleton (= 'gemination')?
 - Same duration as a singleton (= 'degemination')?

Assumptions about gemination in English

Gimson's Pronunciation of English (2014):

"In general such prefixes result in a doubled consonant when the prefix-final and the stem-initial consonants are identical, e.g. *unnecessary* is pronounced with a double length [n:]. (This rule does not apply to *in-* and its variants, so for example *illogical* is pronounced with only a single /l/)." (p. 248)

Cohen-Goldberg (2013: 1055f):

"Similarly in English, although geminates are banned from monomorphemic words (*spaghe[tt]i) and words containing less productive affixes (e.g.in-: i[n]umerable), they are allowed in words containing more productive affixes and compounds (e.g. un-: u[nn]ecessary; boo[kk]eeper)."

Assumptions about gemination in English

- Gemination depends on the affix involved:
 - *un-* geminates
 - *in-* does not geminate
- Assumption is in line with theory of Lexical Phonology (cf. Kiparsky 1982, Mohanan 1986)
 - Affixes belong to different Lexical Strata
 - Level 1 (like *in-*) affixes display a weak morphological boundary and a great degree of integration with the base
 - Level 2 affixes (like *un-*) display a strong morphological boundary and a lesser degree of integration with the base

Kiparsky, P. (1982). Lexical morphology and phonology. In *Linguistics in the morning calm.* Mohanan, K. P. (1986). *The theory of lexical phonology*.

Prediction for gemination

Strata/ Level	Affix	Prediction for gemination
Level 1	in-	in +numerous \rightarrow i/n/umerous \rightarrow i[n]umerous
Level 2	un-	un + natural \rightarrow u/nn/atural \rightarrow u[n:]atural

Previous phonetic research

- Only one study empirically investigated gemination in English (Oh and Redford 2012)
- They found some variation in the gemination of *in*-prefixed words:

immigrational: No gemination *immemorial*: gemination

- \rightarrow There seems to be variation within one affix!
- → So, what is the pattern of the variation in gemination?
 Is it really the affix which determines gemination/degemination?

Oh, G. E., & Redford, M. A. (2012). The production and phonetic representation of fake geminates in English.

The research question

Is the /n/ in *unnatural* longer than the /n/ in *unable*?

If yes, un-geminates!

Is the /m/ in *immature* longer than the /m/ in *impossible*?

If yes, in- geminates!

→Implications for theories of morpho-phonology, such as Lexical Phonology

Methodology

- *in-* and *un-* prefixed words with a double or a single consonant at the morphological boundary
- Switchboard Corpus (Godfrey & Holliman 1997)
- Telephone conversations, North American English
- For the prefix *in* the allomorph /Im/ was investigated
- Manual segmentation and acoustic measurements in Praat (Boersma & Weenink 2014)
- Coding of additional variables, e.g. frequencies, duration of the preceding segment, word duration

Overview of the data

	Double Consonant	Single Consonant	Total per affix
In-	94	65	159
Un-	22	133	155

Overview of the un-data

Data distribution: un-

Overview of the un-data

Data distribution: un-

Overview of the un-data

Data distribution: un-

Overview of the in-data

Overview of the in-data

Data distribution: in-

Overview of the in-data

Methodology: Statistical Analysis

- Linear regression:
 - look at the effect of one variable
 - while holding all others constant
- Predict duration of the nasal on the basis of the number of consonants

Methodology: Analysis Model 1 un

Dependent Variable: Absolute Duration of the Nasal in seconds

Variable of interest: Number of Nasals

Covariates: Word Form Frequency, Relative Frequency, Preceding Segment Duration, Number of Segments in the Word

Methodology: Analysis Model 2 in

Dependent Variable: Absolute Duration of the Nasal in seconds

Variables of interest: 1. Number of Nasals

- 2. Semantic Transparency
- 3. Type of Affix

Covariates: Word Form Frequency, Relative Frequency, Preceding Segment Duration, Number of Segments in the Word

Results: Model 2 in-

Semantic Transparency and Type of Affix:

Type of affix Semantic Transparency	In-Locative	In-Negative
Transparent	immigrate	immature
Opaque	imply	impunity

Results: Model 1 un-

Number of Nasals in the Word

• Doubles are longer than singles \rightarrow Gemination

Results: Model 2 in-

in-

• Doubles are longer than singles \rightarrow Gemination

Results: Model 2 in-

Interaction of Semantic Transparency with Type of Affix:

Type of Affix by Semantic Transparency

- Opaque: no effect (e.g. *imply* vs. *impunity*)
- Transparent: /m/ is shorter in locative in (e.g. immigrate) than in negative in (e.g. immature)

Summary: Results

There is a difference in duration between double consonants and singletons for *un*-affixed and for *in*-affixed words.

/n/ in *unnatural* is longer than the /n/ in *unable*!

AND

/m/ in *immature is* longer than the /m/ in *impossible*!

Both, *in-* and *un-* prefixed words can geminate!

Summary: Results

• Effect of semantic transparency in interaction with type affix for *in*-prefixed words

• These effects are robust in natural speech and also hold if we control for phonetic effects such as word duration

Implications

Both, *in-* and *un-* prefixed words can geminate!

- Challenges simple categorical effects of Lexical Strata as suggested by Lexical Phonology
- Demands for models of morpho-phonological interaction which take other factors into account

Effect of semantic transparency in interaction with type of affix for *in*-prefixed words

- Morphological structure is mirrored by phonetic detail
- Challenges models of speech production that state that post-lexical phonology has no access to morphological information (cf. Levelt 1999)

Future Research

- Replication of results with more data and different affixes
- Conduct production experiment and test the assumptions of different models of the phonology-morphology interaction (e.g. Morphological Segmentability Hypothesis, Hay 2003)

Thank you very much for your attention!

References

Boersma, P. & Weenink, D. (2014). Praat: doing phonetics by computer. Retrieved from http://www.praat.org/

Cho, T. (2001). Effects of Morpheme Boundaries on Intergestural Timing: Evidence from Korean. Phonetica, 58(3), 129–162.

Cohen-Goldberg, Ariel M. (2013): Towards a theory of multimorphemic word production: The heterogeneity of processing hypothesis. In: Language and Cognitive Processes 28 (7), S. 1036–1064.

Cruttenden, Alan; Gimson, Alfred Charles (2014): Gimson's pronunciation of English. 8th ed. London, New York: Routledge.

Godfrey, John J.; Holliman, Edward (1997): Switchboard-1 Release 2. [Philadelphia, Pa.]: Linguistic Data Consortium.

Hay, J. (2007). The phonetics of 'un'. In J. Munat (Ed.), Studies in functional and structural linguistics: v. 58. Lexical creativity, texts and contexts (pp. 39–57). Amsterdam, Philadelphia: J. Benjamins Pub. Co.

Kiparsky, Paul (1982): Lexical morphology and phonology. In: Linguistics in the morning calm. Selected papers from SICOL-1981. Unter Mitarbeit von The linguistic society of Korea. Seoul, Korea: Hanshin Pub. Co.

Mohanan, K. P. (1986). The theory of lexical phonology. Studies in natural language and linguistic theory: [v. 6]. Dordrecht, Boston, Norwell, MA: D. Reidel Pub. Co.; Sold and distributed in the U.S.A. and Canada by Kluwer Academic.

Oh, Grace E.; Redford, Melissa A. (2012): The production and phonetic representation of fake geminates in English. In: Journal of Phonetics 40 (1), S. 82–91.

Plag, I. (2014). Phonological and phonetic variability in complex words: An uncharted territory. *Italian Journal of Linguistics / Rivista di Linguistica.*,

R Development Core Team. (2014). R: A Language and Environment for Statistical Computing. 31 Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org

Appendix

What is gemination?

• Gemination is used for related phenomena on different levels: Phonetic, Phonological, Orthographic

- Phonetic: long consonants which can be distinguished from short consonants by their length
- Phonological: Distinction of meaning in languages like Italian, Finnish, Arabic, e.g. papa vs. pappa
- Orthographically: Doubling of consonants

What is gemination?

Level	Italian	English
Phonetics	[pap:a]	[^ nn ætrəl]? [^ n: ætrəl]? [^ n ætrəl]?
Orthography	рарра	unnatural

Data Distribution

Segmental Sequence	Example	Number of Types	Number of Tokens
Un+n	Unnecessary	5	22
Un+C	Unfit	51	66
Un+V	Unable	43	67
Total		99	155
lm+m	Immemorial	22	94
Im+p/b	impossible	64	65
Total		86	159

Results: Model 1 Un-

Number of Segments in the Word

Effects of Covariates

- Longer words \rightarrow longer consonant duration
- More segments in a word \rightarrow shorter consonant duration

Results: Model 2 *Im*-

Word Duration in seconds

in-

in-

Number of Segments in the Word

Effects of Covariates

- Longer words \rightarrow longer consonant duration
- More segments in a word \rightarrow shorter consonant duration

Model 1: un

Call:
<pre>lm(formula = log(AbsDurCon) ~ TransitionType + WordDur + NoSegWord,</pre>
Resi dual s:
Min 10 Median 30 Max
- 0. 89180 - 0. 21009 0. 00323 0. 21242 0. 83250
Coefficients:
Estimate Std. Error t value $Pr(> t)$
(Intercept) - 2.34771 0.13833 - 16.972 < 2e-16 ***
TransitionTypesingle-C 0.34597 0.08050 -4.298 3.09e-05 ***
TransitionTypesingle-V-0.72417 0.08119 -8.919 1.51e-15 ***
WordDur 1. 10768 0. 17350 6. 384 2. 04e-09 ***
NoSegWord - 0. 09859 0. 01554 - 6. 342 2. 52e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.3187 on 150 degrees of freedom
Multiple R-squared: 0.5626, Adjusted R-squared: 0.5509
F-statistic: 48.24 on 4 and 150 DF, p-value: < 2.2e-16

Model 2: im

Call:	a w		11 / 1		
lm(formula = log(AbsDurCon) ~ NoCons + WordDur + NoSegWord + MorphBound * Affix, data = imComplex2)					
Residuals: Min 1Q Median	3Q Ma	ax			
-0. 64335 -0. 15523 -0. 01938 0. 15	791 0.7518	39			
Coefficients:					
	Estimate S	Std. Error	t value	Pr(> t)	
(Intercept)	- 2. 84293	0. 10155	- 27. 995	< 2e-16	* * *
NoConsdoubl e	0. 26600	0.06236	4.266	3. 49e-05	* * *
WordDur	0. 50065	0. 14642	3.419	0.000806	* * *
NoSegWord	- 0. 03508	0.01358	- 2. 584	0.010720	*
MorphBoundtransparent	- 0. 18686	0.08473	- 2. 205	0. 028932	*
Affixi nNeg	- 0. 00515	0.09343	- 0. 055	0.956118	
MorphBoundtransparent: AffixinNeg	0. 36325	0. 11229	3. 235	0.001493	* *
Signif. codes: 0 '***' 0.001 '*	*' 0.01 '*'	0.05'.'	0.1''	1	
Residual standard error: 0.2435 on 152 degrees of freedom Multiple R-squared: 0.4394, Adjusted R-squared: 0.4173 F-statistic: 19.86 on 6 and 152 DF, p-value: < 2.2e-16					