Prefixal Gemination in English: An experimental study on *un-* and *in-*

Sonia Ben Hedia

Heinrich-Heine-Universität Düsseldorf

Cambridge Colloquium October 25, 2016

(De-)Gemination in English

- Sequence of two identical consonants across a morphological boundary
 - **un-** un-natural
 - *in- in-numerous, im-material, il-logical, ir-resistable*
 - dis- dis-satisfied
 - -ly sole-ly, technical-ly
- Phonetic correlates
 - o Gemination: Longer duration than a singleton
 - o Degemination: Same duration as a singleton

Overarching research questions

- What is the pattern of germination in English affixation?
- Which factors influence the duration of consonant length on affix boundaries?
- What are the theoretic implications? Which theories are supported, which are falsified?

Methodology

Corpus study	Experimental study	
Prefixation	Prefixation	
<i>in</i> as in <i>innumerous</i> <i>un</i> as in <i>unnatural</i> <i>dis</i> as in <i>dissolve</i>	<i>in</i> as in <i>innumerous</i> <i>un</i> as in <i>unnatural</i> <i>dis</i> as in <i>dissolve</i>	
Suffixation	Suffixation	
ly as in <i>really</i>	ly as in <i>really</i>	

Methodology

Corpus study	Experimental study
Prefixation	Prefixation
<i>in</i> as in <i>innumerous</i> <i>un</i> as in <i>unnatural</i> <i>dis</i> as in <i>dissolve</i>	<i>in</i> as in <i>innumerous</i> <i>un</i> as in <i>unnatural</i> <i>dis</i> as in <i>dissolve</i>
Suffixation	Suffixation
ly as in <i>really</i>	ly as in <i>really</i>

Methodology

Corpus study	Experimental study
Prefixation	Prefixation
in as in innumerous	in as in innumerous
un as in unnatural	un as in unnatural
dis as in dissolve	dis as in dissolve
Suffixation	Suffixation
ly as in <i>really</i>	ly as in <i>really</i>

(De-)Gemination in English

- Sequence of two identical consonants across a morphological boundary
 - **un-** un-natural
 - *in- in-numerous, im-material, il-logical, ir-resistable*
 - dis- dis-satisfied
 - -ly sole-ly, technical-ly
- Phonetic correlates
 - o Gemination: Longer duration than a singleton
 - $\circ\,$ Degemination: Same duration as a singleton
- Theoretical assumption: Degemination is affix- or stratum-dependent

Predictions: Lexical Phonology

	Level 1	Level 2
Morphological Process	in + numerous	
Phonological Process	i/n/umerous	
Phonetic Outcome	i[n]umerous	

Degemination

Predictions: Lexical Phonology

	Level 1	Level 2
Morphological Process	in + numerous	un + natural
Phonological Process	i/n/umerous	u/nn/atural
Phonetic Outcome	i[n]umerous	u[n:]atural

Degemination

Gemination

Predictions: Morphological Separability

- Phonetic realization is dependent on morphological separability
- more separable \rightarrow less reduction

(e.g. Hay 2003, Smith et al. 2012, Ben Hedia & Plag 2016, Plag 2016)

More separable complex words geminate. Less separable complex words degeminate.

- Separability:
 - Semantic Transparency: opaque vs. transparent
 - Type of Root: bound root vs. word
 - Relative Frequency: relative frequency of base and derivative

Empirical evidence?

- Only few studies empirically investigated gemination in English
- Corpus Study (Ben Hedia & Plag 2016)
 - *dis* geminates
 - -ly degeminates
- *un-geminates* (Kaye 2005, Oh and Redford 2013, Ben Hedia & Plag 2016)
- *in-* can geminate
 - Type-dependent (Oh and Redford 2013)
 - speaker-dependent (Kaye 2005)
 - *in* geminates (Ben Hedia and Plag 2016)
- Problems: Only very small set of types Contradictory results

This study

- Reading experiment
- 2 affixes : *un* and *in*-
- Comparison of nasal duration in 3 different environments

	Morphological geminate	Singleton in base	Singleton in complex word	
un	unnatural (n#n)	natural (#n)	uneven (n#V)	
im	immature (m#m)	mature (#m)	impossible (m#p)	
in	innumerous (n#n)	numerous (#n)	intolerant (n#t)	inexplicit (n#V)

Experiment

- 183 types
- Items are put in carrier sentences

accented position

John said UNNATURAL again.

John tells me NATURAL again.

It is John who said *unnatural* again, NOT HENRY.

Experiment

- 183 types
- Items are put in carrier sentences

unaccented position

John said UNNATURAL again.

John tells me NATURAL again.

It is John who said *unnatural* again, NOT HENRY.

Experiment

- 29 participants (native speakers of British English) read the sentences
- Separability Rating

Separability Rating

0% (______) 100%

Complex words

*Please rate on a scale from 1 to 4 how difficult you find it to divide the word into its first two letters (*un-, in-* or *im-*) and the rest of the word. I

	I don't know this word.	1 - Very easy to break into parts in/im/un +rest of word	2 - Easy to break into parts in/im/un +rest of word	3 - Difficult to break into parts in/im/un +rest of word	4 - Very difficult to break into parts in/im/un +rest of word
inexpressive	\odot	\odot	\odot	\odot	\bigcirc
unnoteworthy	\odot	0	0	\odot	\odot
improve	\odot	\odot	\odot	\odot	\odot
ineliminable	\odot	0	0	\odot	0
impotence	\odot	\odot	\odot	\odot	\odot
immitigable	\odot	0	•	0	0
unnoticed	\odot	\odot	\odot	\odot	\odot
unnerve	\odot	0	•	0	0
immature	\odot	\odot	0	\odot	0
impanel	\odot	0	0	0	0

Experiments

- 29 participants (native speakers of British English) read the sentences
- Separability Rating
- Items were manually segmented
- Acoustic measurements
- Items were coded (frequencies, stress....)

Data Overview

	Morphological	Singleton in	Singleton in complex	
	geminate	base	word	
un	535	549	676	
im	490	458	610	
in	88	77	422	614

Statistical Modelling

- Multiple regression with **nasal duration** as dependent variable
- Speaker and Item as random effects

Statistical Modelling

- Variables :
 - Environment
 - Preceding Segment Duration
 - Following Segment
 - Following Segment Duraon
 - Local Speech Rate
 - Global Speech Rate
 - Stress
 - Accentuation
 - Word Form Frequency
 - Order
 - Affix
 - Semantic Transparency
 - Rating
 - Relative Frequency
 - Type of Root

Statistical Modelling

- Variables :
 - Environment
 - Preceding Segment Duration
 - Following Segment
 - Following Segment Duraon
 - Local Speech Rate
 - Global Speech Rate
 - Stress
 - Accentuation
 - Word Form Frequency
 - Order
 - Affix
 - Semantic Transparency
 - Rating
 - Relative Frequency
 - Type of Root

Morphological Separability

Results: Overview

Results: Overview

Results in-: m#m vs. m#p

duration in milliseconds

• $R^2 = 0.56$

- Covariates show expected effects
- Primary stress on base intial syllable: Doubles are 11 ms longer than singles
- Unstressed base intial syllable: Doubles are as long as singles

Results in-: m#m vs. m#p

AIC increase in im-model

Results in-: m#m vs. #m

Results in-: m#m vs. #m

AIC increase in im-model

Results in-: n#n vs. n#t vs. n#V

environment by stress on base Initial syllable

duration In milliseconds

Results in-: n#n vs. n#t vs. n#V

environment by stress on base Initial syllable

Results in-: n#n vs. n#t vs. n#V

AIC Increase In In-model

Summary: in-

For *im*-:

- Only if there is stress on base initial syllable: Doubles are slighlty longer than singles with a following stop
- Only after a pause: Doubles are slightly longer than singles in base words
- Environment is not a powerful predictor

For *in*-:

- Stressed base initial syllable: Doubles are longer than singles with a following vowel
- Unstressed base initial syllable: Doubles are slightly longer than singles with a following vowel
- Doubles are never longer than singles with a following stop
- o Environment is a powerful predictor

Results un-: n#n vs. n#V

accentuation by environment

Results un-: n#n vs. n#V

Results un-: n#n vs. #n

- $R^2 = 0.74$
- Covariates show expected effects
- Doubles are 36 ms longer than singles

Results un-: n#n vs. #n

AIC increase in un-model

Summary

- No effect of separability
- *un* clearly geminates:
 - doubles are always longer than singles
- *in-* does not clearly geminate
 - For *im*-: doubles are never clearly longer than singles
 - For *in*-: only when base intial syllable is stressed, doubles are clearly longer than singles with a following vowel

un- and in- differ in their gemination pattern

Does *in-* geminate? Does stress play an important role?

im-

- Experiment:
 - Stressed base initial syllable: doubles slightly longer than singletons
 - Unstressed base intial syllable: doubles as long as singletons
- Corpus: Doubles always longer than singletons

in-

- Stressed base intial syllable:
 - doubles longer than singletons with following vowel
 - doubles as long as singletons with following stop
- Unstressed base intial syllable:
 - doubles slightly longer than singletons with following vowel
 - doubles shorter than singletons with following stop

Why do the experimental results deviate from the results of the corpus study?

Corpus	Experiment
 <i>un</i>- geminates (n#n= 90, n#V= 43) 	 un- geminates (n#n=148/132, n#V= 51/54)
 <i>in-</i> geminates (m#m= 96, m#p= 69) 	 <i>in</i>- does not clearly geminate (m#m= 99/ 76, m#p= 87/83)
 Difference in duration between negative and locative <i>in</i>- 	• No difference in duration between negative and locative <i>in</i> -
 Natural conversational speech American English Less types 	 Read speech British English More types

Does separability play a role?

- No direct effect of separability on gemination
- *un* more separable than *in*-
- Could the different gemination behavior of *un* and *in* be explained with a "categorical" difference in their separability?

Thank you very much for your attention!

Special thanks to...

- Melanie Bell, Anglia Ruskin University
- Phonetics Lab, Department of Theoretical and Applied Linguistics, University of Cambridge

Funding

Deutsche Forschungsgemeinschaft:

Forschergruppe 2372

- Grant PL151/8-1 'Morpho-phonetic Variation in English'
- Grant PL151/7-1 'FOR 2737 Spoken Morphology: Central Project'

References

Ben Hedia, Sonia; Plag, Ingo (2016): Gemination and Degemination in English Affixation. Lexical Strata, Variability, and Phonetic Evidence. 1 Paper presented at "17th International Morphology Meeting", 18.02.2016.

Boersma, P. & Weenink, D. (2014). Praat: doing phonetics by computer. Retrieved from http://www.praat.org/

Hay, Jennifer (2003): Causes and consequences of word structure. New York: Routledge (Outstanding dissertations in linguistics). Online verfügbar unter

http://www.loc.gov/catdir/enhancements/fy0646/2004297538-d.html.

Kaye, Alan S. (2005): Gemination in English. In: English Today 21 (2), S. 43-55.

Kiparsky, Paul (1982): Lexical morphology and phonology. In: Linguistics in the morning calm. Selected papers from SICOL-1981. Unter Mitarbeit von The linguistic society of Korea. Seoul, Korea: Hanshin Pub. Co.

Mohanan, K. P. (1986). The theory of lexical phonology. Studies in natural language and linguistic theory: [v. 6]. Dordrecht, Boston, Norwell, MA: D. Reidel Pub. Co.; Sold and distributed in the U.S.A. and Canada by Kluwer Academic.

Oh, Grace E.; Redford, Melissa A. (2012): The production and phonetic representation of fake geminates in English. In: *Journal of Phonetics 40* (1), S. 82–91.

Plag, Ingo (2016) The phonetics of new words. Paper presented at the Workshop 'Expanding the lexicon', Universität Trier, November 17-18, 2016

R Development Core Team. (2014). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org

Smith, Rachel; Baker, Rachel; Hawkins, Sarah (2012): Phonetic detail that distinguishes prefixed from pseudo-prefixed words. In: Journal of Phonetics 40 (5), S. 689–705. DOI: 10.1016/j.wocn.2012.04.002.

Does *in*-geminate?

	im m#m vs m#p	im m#m vs.#m	in n#n vs. n#t	in n#n vs. n#V
Experiment	unstressed base:	Pause before word:	unstressed base:	unstressed base:
	double = single	double = single	double < single 53 ms	double > single 8 ms
	stressed base:	No pause before word:	stressed base:	stressed base:
	double > single 11 ms	double > single 10 ms	double = single	double > single 27 ms
Corpus	double > single 27 ms			

Data Overview: types

prefix	Morphological geminate	Base	Singletons	
	(n#n)	(Base)	(n#V)	
un	20	20	26	
im	19	25	25	
in	4	3	19	27

Decomposability of affixes

Decomposability of affixes

un-model: unV vs. unn

Fixed effects:

Estimate Std. Error	dft value Pr(> t)
(Intercept)	9.154e-01 3.055e-03 4.524e+02 299.662 < 2e-16 ***
FirstSyllBaseStressunst	ressed -3.628e-03 1.202e-03 4.580e+01 -3.018 0.00414 **
LocSpeech	-1.326e-03 1.992e-04 5.746e+02 -6.655 6.62e-11 ***
GlobalSpeechRate	-4.481e-03 9.369e-04 8.215e+02 -4.782 2.06e-06 ***
PrecSegDur	-2.997e-02 1.289e-02 1.150e+03 -2.325 0.02024 *
TypeOfRootword	3.191e-03 1.612e-03 3.880e+01 1.981 0.05476.
CategoryunV	-5.645e-02 1.278e-03 5.800e+01 -44.164 < 2e-16 ***
AccentuationUnaccente	ed -6.328e-03 1.049e-03 1.144e+03 -6.033 2.17e-09 ***
CategoryunV:Accentua	tionUnaccented 9.942e-03 1.160e-03 1.119e+03 8.571 < 2e-16 ***

Results 1: un#n vs. un#V

Results 1: un#n vs. un#V

type of root

un-model: Base vs. unn

Fixed effects:

	Estimate Std. Error df t value Pr(> t)
(Intercept)	5.601e-01 1.306e-02 1.814e+02 42.874 < 2e-16 ***
Categoryunn	4.953e-02 6.868e-03 3.170e+01 7.211 3.64e-08 ***
AccentuationUnacce	ented -1.445e-02 3.072e-03 1.016e+03 -4.706 2.88e-06 ***
logWordFormFreq	-2.615e-03 1.117e-03 3.060e+01 -2.341 0.02591 *
FirstSyllBaseStressur	nstressed -3.798e-02 1.141e-02 3.120e+01 -3.327 0.00226 **
LocSpeech	-1.237e-02 7.235e-04 7.480e+02 -17.099 < 2e-16 ***
GlobalSpeechRate	-9.715e-03 3.833e-03 9.771e+02 -2.535 0.01141 *
PrePausePause	-1.160e-02 2.798e-03 1.029e+03 -4.145 3.68e-05 ***
PostPausePause	-6.070e-03 3.111e-03 1.029e+03 -1.951 0.05130.

un-model: Base vs. unn

im-model: m#m vs. m#p

Fixed effects:

	Estimate Std. Erro	or dftvalue Pr(> t)
(Intercept)	7.792e-01 4.280e-03	2.870e+02 182.045 < 2e-16 ***
Categorymp	-1.251e-02 2.695e-03	3.780e+01 -4.644 4.06e-05 ***
FirstSyllBaseStressunstressed	-2.563e-02 3.915e-03	3.690e+01 -6.548 1.15e-07 ***
LocSpeech	-3.561e-03 3.576e-04	6.775e+02 -9.956 < 2e-16 ***
GlobalSpeechRate	-7.102e-03 1.507e-03	9.530e+02 -4.713 2.81e-06 ***
Categorymp:FirstSyllBaseStressunstressed	2.090e-02 5.145e-03	3.690e+01 4.063 0.000243 ***

im-model: m#m vs. m#p

im-model: m#m vs. base

Fixed effects:

Estimate Std. Errordf t value Pr(>|t|)(Intercept)4.884e-01 1.014e-02 4.097e+02 48.141 < 2e-16 ***</td>Environmentm#m-1.001e-02 5.021e-03 4.520e+01 -1.994 0.05223 .PrePausePause-2.783e-02 4.145e-03 9.004e+02 -6.713 3.38e-11 ***AccentuationUnaccented-1.052e-02 3.207e-03 8.888e+02 -3.279 0.00108 **FirstSyllBaseStressunstressed -4.624e-02 5.390e-03 2.900e+01 -8.578 1.88e-09 ***LocSpeech-6.439e-03 6.833e-04 4.939e+02 -9.423 < 2e-16 ***</td>GlobalSpeechRate-8.561e-03 3.781e-03 8.283e+02 -2.264 0.02381 *Environmentm#m:PrePausePause2.590e-02 4.903e-03 8.799e+02 5.283 1.61e-07 ***

im-model: m#m vs. base

in-model: n#n vs. n#V vs. n#t

Fixed effects:

Estimate Std. Error	df t value Pr(> t)	
8.951e-01 4.690e-0	03 3.342e+02 19	90.844 < 2e-1	6 ***
3.165e-03 2.827e	e-03 4.270e+01	1.120 0.2691	47
-2.085e-02 3.047	7e-03 4.270e+01	L -6.841 2.26e	2-08 ***
tressed -2.068e-02	5.220e-03 4.71	0e+01 -3.961	0.000252 ***
-1.872e-03 2.136e	-04 8.757e+02	-8.763 < 2e-1	6 ***
-2.559e-03 9.4	16e-04 1.020e+	03 -2.718 0.0	06683 **
-2.138e-03 8.92	26e-04 1.083e+C	3 -2.395 0.01	6799 *
-4.885e-02 1.743e	e-02 1.079e+03	-2.803 0.0051	.57 **
-3.029e-02 1.175e	-02 1.075e+03 -	2.579 0.01004	47 *
aseStressunstressed 2.63	7e-02 5.668e-03	3 4.660e+01	4.652 2.73e-05 ***
aseStressunstressed 1.19	94e-02 5.599e-0	3 4.740e+01	2.133 0.038118 *
	Estimate Std. Error 8.951e-01 4.690e-(3.165e-03 2.827e -2.085e-02 3.047 ressed -2.068e-02 -1.872e-03 2.136e -2.559e-03 9.4 -2.138e-03 8.92 -4.885e-02 1.743e -3.029e-02 1.175e aseStressunstressed 2.63 aseStressunstressed 1.19	Estimate Std. Error df t value Pr(> t 8.951e-01 4.690e-03 3.342e+02 19 3.165e-03 2.827e-03 4.270e+01 -2.085e-02 3.047e-03 4.270e+01 -2.085e-02 3.047e-03 4.270e+01 -2.068e-02 5.220e-03 4.71 -1.872e-03 2.136e-04 8.757e+02 -2.559e-03 9.416e-04 1.020e+ -2.138e-03 8.926e-04 1.083e+0 -4.885e-02 1.743e-02 1.079e+03 -3.029e-02 1.175e-02 1.075e+03 - aseStressunstressed 2.637e-02 5.668e-03 aseStressunstressed 1.194e-02 5.599e-0	Estimate Std. Error df t value Pr(> t) 8.951e-01 4.690e-03 3.342e+02 190.844 < 2e-1 3.165e-03 2.827e-03 4.270e+01 1.120 0.2691 -2.085e-02 3.047e-03 4.270e+01 -6.841 2.26e cressed -2.068e-02 5.220e-03 4.710e+01 -3.961 -1.872e-03 2.136e-04 8.757e+02 -8.763 < 2e-1 -2.559e-03 9.416e-04 1.020e+03 -2.718 0.0 -2.138e-03 8.926e-04 1.083e+03 -2.395 0.01 -4.885e-02 1.743e-02 1.079e+03 -2.803 0.0051 -3.029e-02 1.175e-02 1.075e+03 -2.579 0.01004 aseStressunstressed 2.637e-02 5.668e-03 4.660e+01 aseStressunstressed 1.194e-02 5.599e-03 4.740e+01

in-model: n#n vs. n#V vs. n#t

Oh and Redford: difference between un- and in-

Fig. 2. Absolute nasal duration for word-internal singletons, word-internal geminates and word boundary geminates produced in normal and careful speech.

un- and in- : Corpus vs. Experiment

duration in milliseconds

environment

un- and in- : Corpus vs. Experiment

