Prefixal Gemination in English: An experimental study on *un-* and *in-*

Sonia Ben Hedia

Heinrich-Heine-Universität Düsseldorf

Spoken Morphology: Phonetics and Phonology of Complex Words
Heinrich-Heine-Universität Düsseldorf
August 24-26, 2016

(De-)Gemination in English

Sequence of two identical consonants across a morphological boundary

```
un-
un-natural
in-
in-numerous, im-material, il-logical, ir-resistable
dis-
dis-satisfied
sole-ly, technical-ly
```

- Phonetic correlates
 - Gemination: Longer duration than a singleton
 - Degemination: Same duration as a singleton
- Theoretical assumption: Degemination is affix- or stratum-dependent

Predictions: Lexical Phonology

	Level 1	Level 2
Morphological Process	in + numerous	
Phonological Process	i/n/umerous	
Phonetic Outcome	i[n]umerous	

Degemination

Predictions: Lexical Phonology

	Level 1	Level 2
Morphological Process	in + numerous	un + natural
Phonological Process	i/n/umerous	u/nn/atural
Phonetic Outcome	i[n]umerous	u[n:]atural

Degemination

Gemination

Predictions: Morphological Separability

- Phonetic realization is dependent on morphological separability
- more separable → less reduction

(e.g. Hay 2003, Smith et al. 2012, Ben Hedia & Plag 2016, Plag 2016)

More separable complex words geminate.

Less separable complex words degeminate.

- Separability:
 - Semantic Transparency: opaque vs. transparent
 - Type of Root: bound root vs. word
 - Relative Frequency: relative frequency of base and derivative

Empirical evidence?

- Only few studies empirically investigated gemination in English
- Corpus Study (Ben Hedia & Plag 2016)
 - dis- geminates
 - -ly degeminates
- un- geminates (Kaye 2005, Oh and Redford 2013, Ben Hedia & Plag 2016)
- in- can geminate
 - Type-dependent (Oh and Redford 2013)
 - speaker-dependent (Kaye 2005)
 - in- geminates (Ben Hedia and Plag 2016)
- Problems: Only very small set of types
 Contradictory results

This study

- Reading experiment
- 2 affixes : *un* and *in*-
- Comparison of nasal duration in 3 different environments

	Morphological geminate	Singleton in base	Singleton in word	complex
un	unnatural (n#n)	natural (#n)	uneven (n#V)	
im	immature (m#m)	mature (#m)	impossible (m#p)	
in	innumerous (n#n)	numerous (#n)	intolerant (n#t)	inexplicit (n#V)

Experiment

- 183 types
- Items are put in carrier sentences

accented position

John said UNNATURAL again

John tells me NATURAL again.

It is John who said *unnatural* again, NOT HENRY.

Experiment

- 183 types
- Items are put in carrier sentences

unaccented position

John said **UNNATURAL** again.

John tells me NATURAL again.

It is John who said unnatural again, NOT HENRY.

Experiment

- 29 participants (native speakers of British English) read the sentences
- Separability Rating

Separability Rating

0% 100%

Complex words

*Please rate on a scale from 1 to 4 how difficult you find it to divide the word into its first two letters (un-, in- or im-) and the rest of the word. I

	I don't know this word.	1 - Very easy to break into parts in/im/un +rest of word	2 - Easy to break into parts in/im/un +rest of word	3 - Difficult to break into parts in/im/un +rest of word	4 - Very difficult to break into parts in/im/un +rest of word
inexpressive	0				0
unnoteworthy	0				0
improve	0	0	0		0
ineliminable					0
impotence	0	0			0
immitigable					
unnoticed	0	0			0
unnerve					
immature	0	0		0	0
impanel	0				0

Experiments

- 29 participants (native speakers of British English) read the sentences
- Separability Rating
- Items were manually segmented
- Acoustic measurements
- Items were coded (frequencies, stress....)

Data Overview

	Morphological geminate	Singleton in base	Singleton in word	complex
un	535	549	676	
im	490	458	610	
in	88	77	422	614

Statistical Modelling

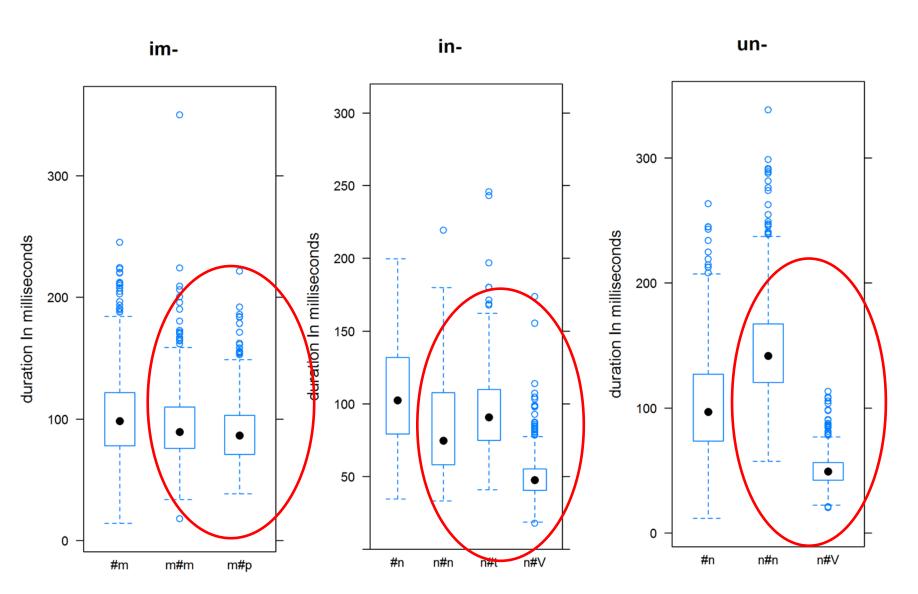
- Multiple regression with nasal duration as dependent variable
- Speaker and Item as random effects

Statistical Modelling

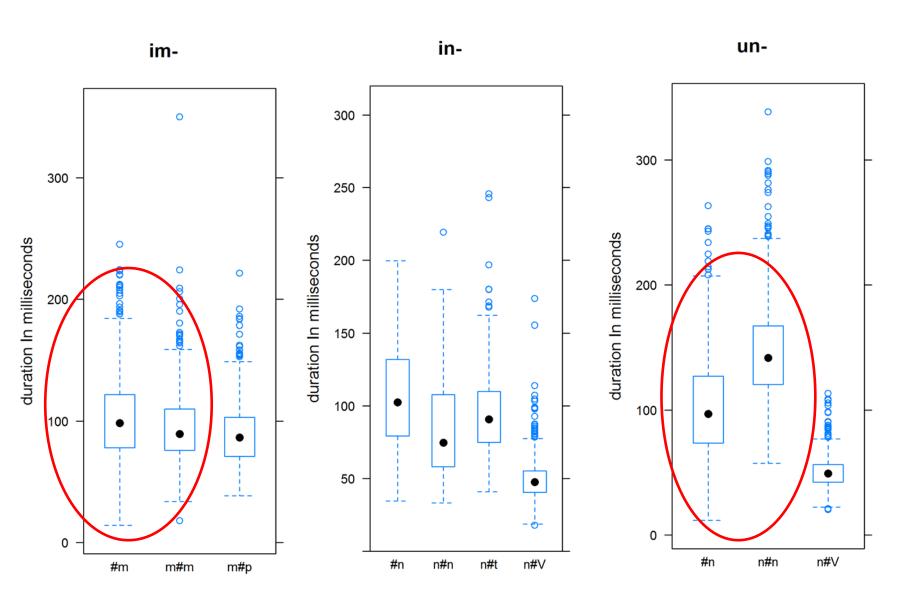
• Variables:

- Environment
- Preceding Segment Duration
- Following Segment
- Following Segment Duraon
- Local Speech Rate
- Global Speech Rate
- Stress
- Accentuation
- Word Form Frequency
- Order
- Affix
- Semantic Transparency
- Rating
- Relative Frequency
- Type of Root

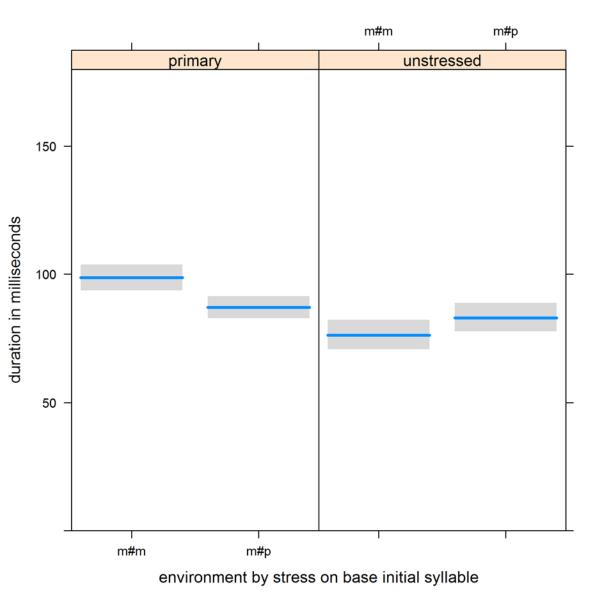
Statistical Modelling


Variables:

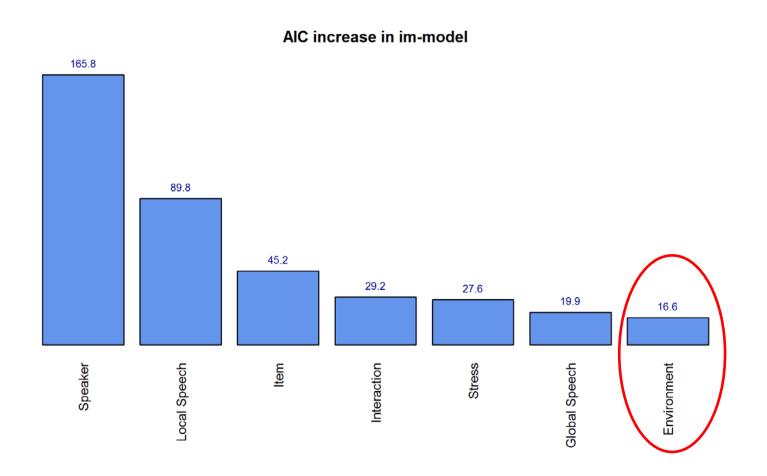
- Environment
- Preceding Segment Duration
- Following Segment
- Following Segment Duraon
- Local Speech Rate
- Global Speech Rate
- Stress
- Accentuation
- Word Form Frequency
- Order
- Affix
- Semantic Transparency
- Rating
- Relative Frequency
- Type of Root


Morphological Separability

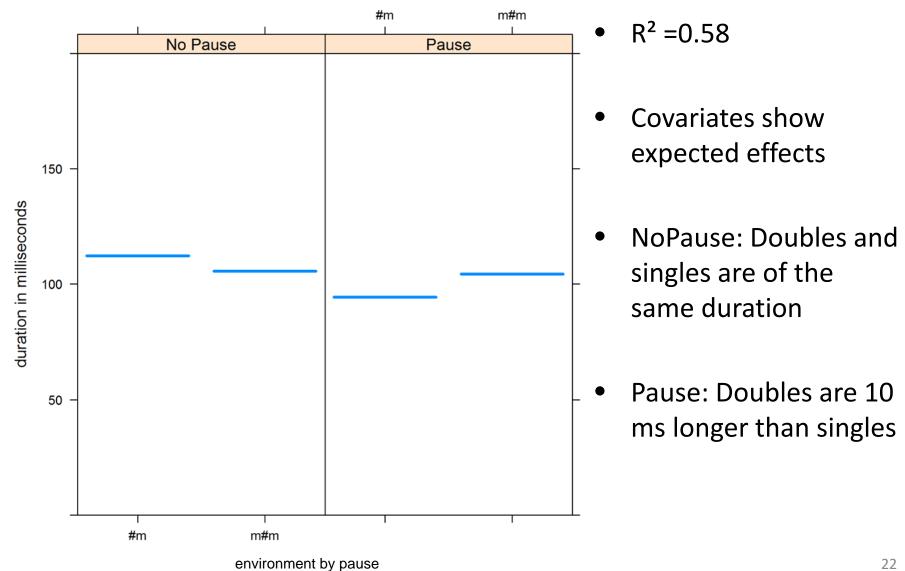
	uncool unfit	impossible inexact	import intake
Affix	un- >>	negative in-	>> locative in-
Semantic Transparency	transparent		opaque
Type of Root	word as a ro	ot	bound root
Relativ Freq.	base more free	quent	derivative more frequent
Rating	easy to segme	nt	difficult to segment


Results: Overview

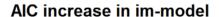
Results: Overview



Results in-: m#m vs. m#p

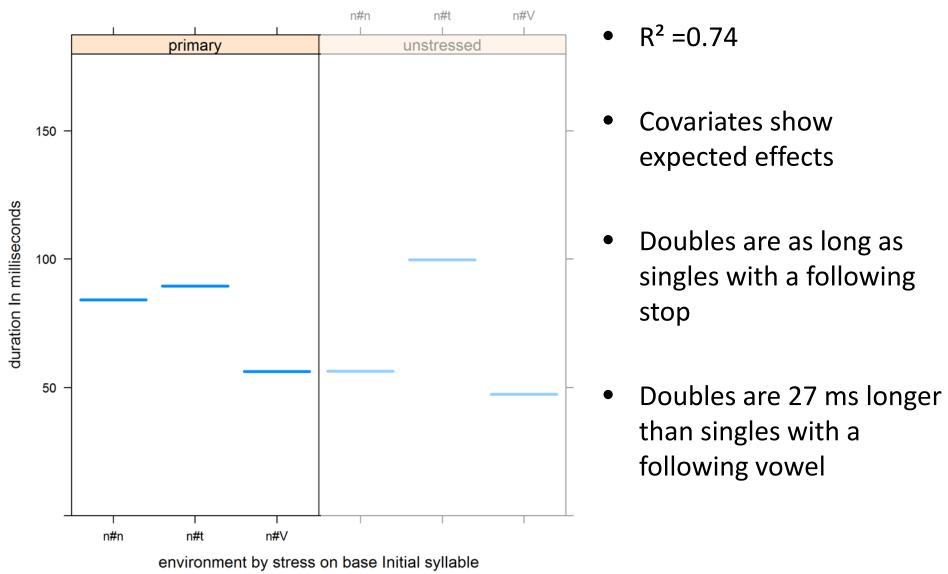


- $R^2 = 0.56$
- Covariates show expected effects
- Primary stress on base: Doubles are 11 ms longer than singles
- Unstressed base:
 Doubles are as long as singles

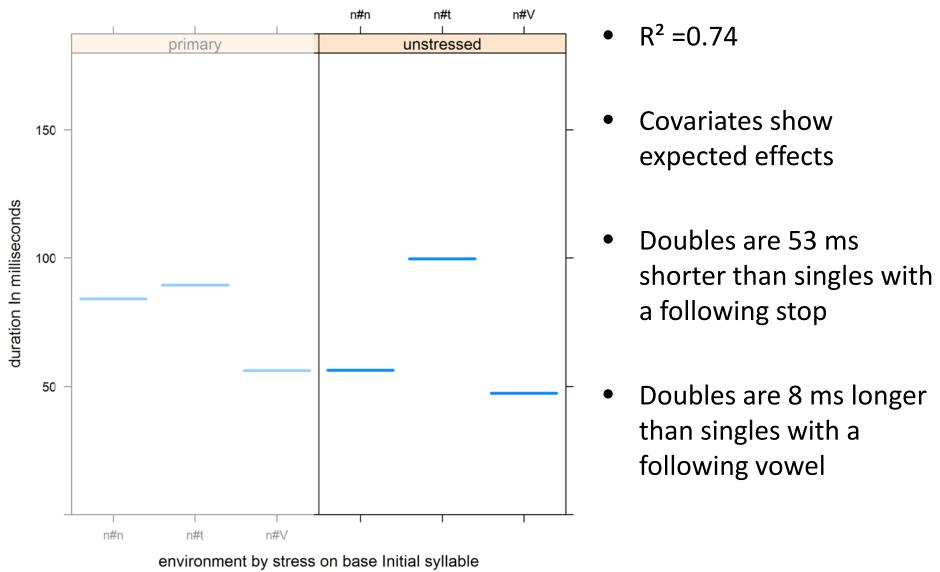

Results in-: m#m vs. m#p



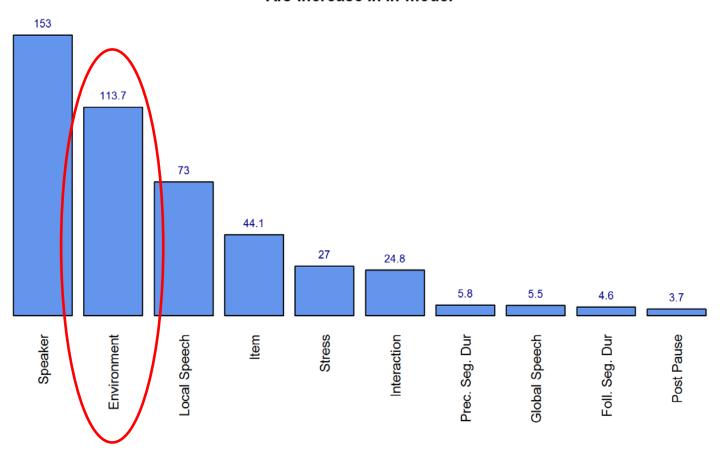
Results in-: m#m vs. #m



Results in-: m#m vs. #m



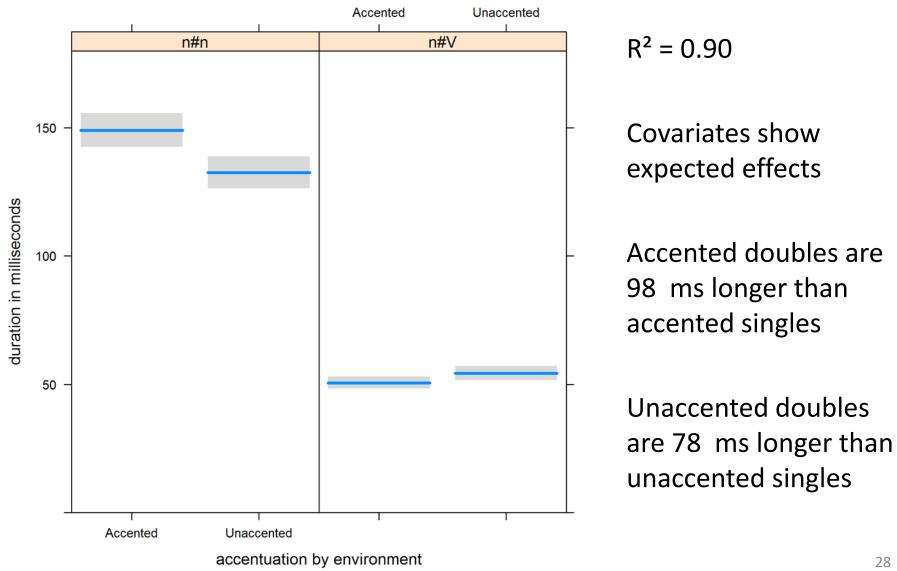
Results in-: n#n vs. n#t vs. n#V



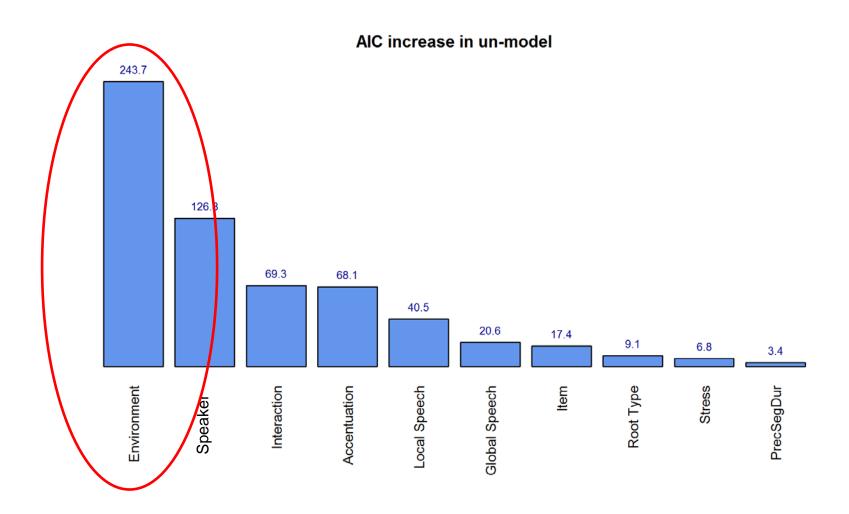
Results in-: n#n vs. n#t vs. n#V

Results in-: n#n vs. n#t vs. n#V

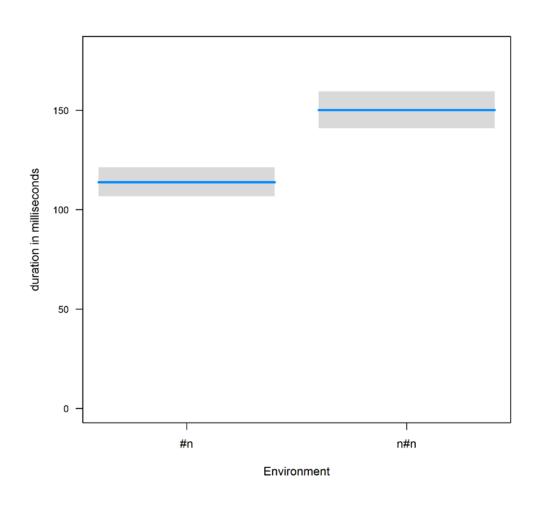
Summary: in-


For im-:

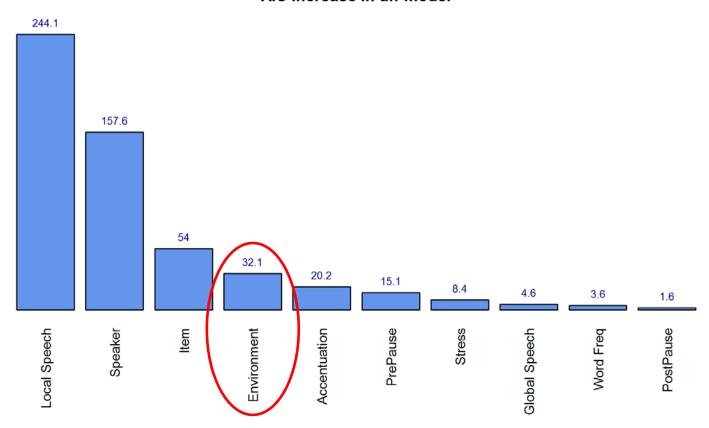
- Only if there is stress on base: Doubles are slighlty longer than singles with a following stop
- Only after a pause: Doubles are slightly longer than singles in base words
- Environment is not a powerful predictor


For *in*-:

- Stressed base: Doubles are longer than singles with a following vowel
- Unstressed base: Doubles are slightly longer than singles with a following vowel
- Doubles are never longer than singles with a following stop
- Environment is a powerful predictor


Results un-: n#n vs. n#V

Results un-: n#n vs. n#V


Results un-: n#n vs. #n

- $R^2 = 0.74$
- Covariates show expected effects
- Doubles are 36 ms longer than singles

Results un-: n#n vs. #n

AIC increase in un-model

Summary

- No effect of separability
- un- clearly geminates:
 - doubles are always longer than singles
- in- does not clearly geminate
 - For im-: doubles are never clearly longer than singles
 - For in-: only when base is stressed, doubles are clearly longer than singles with a following vowel

un- and in- differ in their gemination pattern

Discussion

Does *in*- geminate? Does stress play an important role?

im-

- Experiment:
 - Stressed base: doubles slightly longer than singletons
 - Unstressed base: doubles as long as singletons
- Corpus: Doubles always longer than singletons

in-

- Stressed base:
 - doubles longer than singletons with following vowel
 - doubles as long as singletons with following stop
- Unstressed base:
 - doubles slightly longer than singletons with following vowel
 - doubles shorter than singletons with following stop

Discussion

Why do the experimental results deviate from the results of the corpus study?

Corpus	Experiment
• un- geminates	• un- geminates
(n#n= 90, n#V= 43)	(n#n=148/132, n#V= 51/54)
• in- geminates	 in- does not clearly geminate
(m#m= 96, m#p= 69)	(m#m= 99/ 76, m#p= 87/83)
D:cc	
Difference in duration between	No difference in duration hetween possible and locative in
negative and locative <i>in-</i>	between negative and locative in-
 Natural conversational speech 	 Read speech
 American English 	British English
• Less types	 More types

Discussion

Does separability play a role?

- No direct effect of separability on gemination
- *un-* more separable than *in-*
- Could the different gemination behavior of *un* and *in* be explained with a "categorical" difference in their separability?

Thank you very much for your attention!

Special thanks to...

- Melanie Bell, Anglia Ruskin University
- Phonetics Lab, Department of Theoretical and Applied Linguistics, University of Cambridge

Funding

Deutsche Forschungsgemeinschaft:

Forschergruppe 2372

- Grant PL151/8-1 'Morpho-phonetic Variation in English'
- Grant PL151/7-1 'FOR 2737 Spoken Morphology: Central Project'

References

Ben Hedia, Sonia; Plag, Ingo (2016): Gemination and Degemination in English Affixation. Lexical Strata, Variability, and Phonetic Evidence. 1 Paper presented at "17th International Morphology Meeting", 18.02.2016.

Boersma, P. & Weenink, D. (2014). Praat: doing phonetics by computer. Retrieved from http://www.praat.org/

Hay, Jennifer (2003): Causes and consequences of word structure. New York: Routledge (Outstanding dissertations in linguistics). Online verfügbar unter http://www.loc.gov/catdir/enhancements/fy0646/2004297538-d.html.

Kaye, Alan S. (2005): Gemination in English. In: English Today 21 (2), S. 43-55.

Kiparsky, Paul (1982): Lexical morphology and phonology. In: Linguistics in the morning calm. Selected papers from SICOL-1981. Unter Mitarbeit von The linguistic society of Korea. Seoul, Korea: Hanshin Pub. Co.

Mohanan, K. P. (1986). The theory of lexical phonology. Studies in natural language and linguistic theory: [v. 6]. Dordrecht, Boston, Norwell, MA: D. Reidel Pub. Co.; Sold and distributed in the U.S.A. and Canada by Kluwer Academic.

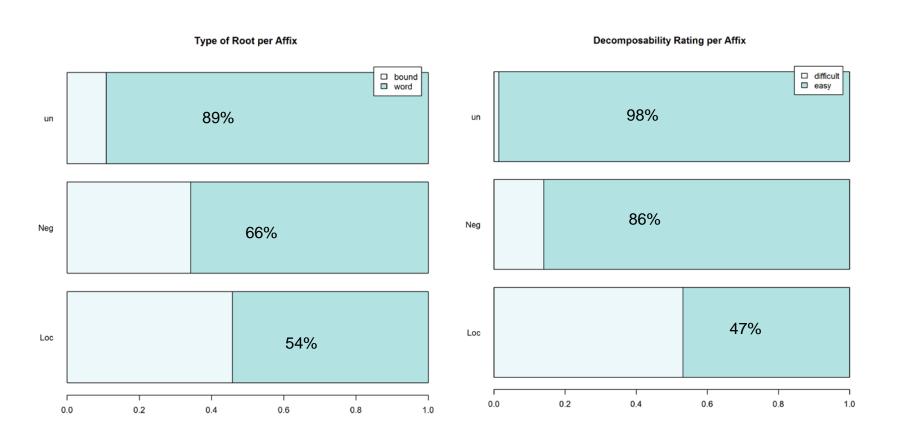
Oh, Grace E.; Redford, Melissa A. (2012): The production and phonetic representation of fake geminates in English. In: *Journal of Phonetics 40* (1), S. 82–91.

Plag, Ingo (2016) The phonetics of new words. Paper presented at the Workshop 'Expanding the lexicon', Universität Trier, November 17-18, 2016

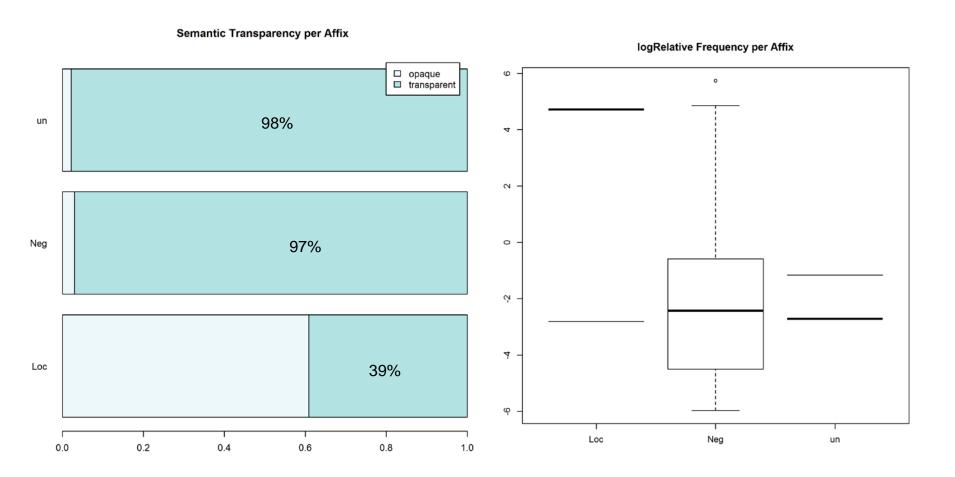
R Development Core Team. (2014). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org

Smith, Rachel; Baker, Rachel; Hawkins, Sarah (2012): Phonetic detail that distinguishes prefixed from pseudo-prefixed words. In: Journal of Phonetics 40 (5), S. 689–705. DOI: 10.1016/j.wocn.2012.04.002.

Discussion

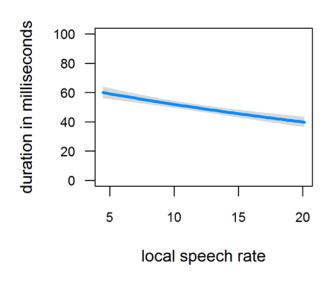

Does *in-* geminate?

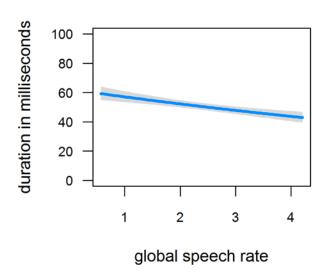
	im m#m vs m#p	im m#m vs.#m	in n#n vs. n#t	in n#n vs. n#V
Experiment	unstressed base:	Pause before word:	unstressed base:	unstressed base:
	double = single	double = single	double < single 53 ms	double > single 8 ms
	stressed base:	No pause before word:	stressed base:	stressed base:
	double > single 11 ms	double > single 10 ms	double = single	double > single 27 ms
Corpus	double > single 27 ms			20

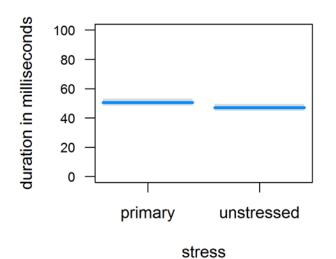

Data Overview: types

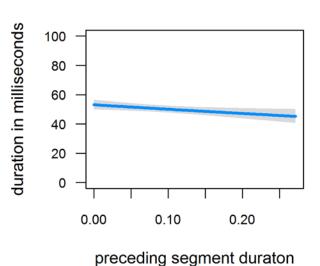
prefix	Morphological geminate (n#n)	Base (Base)	Singletor (n#V)	าร
un	20	20	26	
im	19	25	25	
in	4	3	19	27

Decomposability of affixes

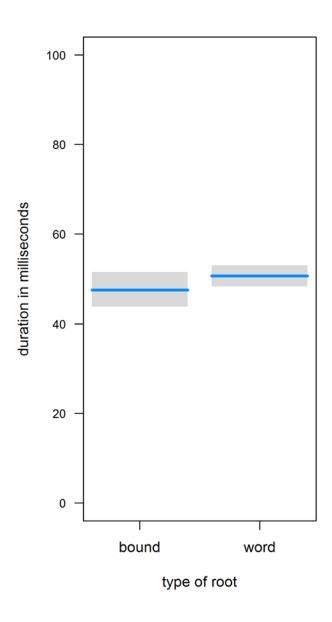

Decomposability of affixes




un-model: unV vs. unn


```
Fixed effects:
Estimate Std. Error
                    df t value Pr(>|t|)
(Intercept)
                     9.154e-01 3.055e-03 4.524e+02 299.662 < 2e-16 ***
FirstSyllBaseStressunstressed -3.628e-03 1.202e-03 4.580e+01 -3.018 0.00414 **
                     -1.326e-03 1.992e-04 5.746e+02 -6.655 6.62e-11 ***
LocSpeech
                         -4.481e-03 9.369e-04 8.215e+02 -4.782 2.06e-06 ***
GlobalSpeechRate
PrecSegDur
                      -2.997e-02 1.289e-02 1.150e+03 -2.325 0.02024 *
TypeOfRootword
                         3.191e-03 1.612e-03 3.880e+01 1.981 0.05476.
CategoryunV
                      -5.645e-02 1.278e-03 5.800e+01 -44.164 < 2e-16 ***
AccentuationUnaccented
                            -6.328e-03 1.049e-03 1.144e+03 -6.033 2.17e-09 ***
CategoryunV:AccentuationUnaccented 9.942e-03 1.160e-03 1.119e+03 8.571 < 2e-16 ***
```

Results 1: un#n vs. un#V



Results 1: un#n vs. un#V

un-model: Base vs. unn

Fixed effects:

```
Estimate Std. Error df t value Pr(>|t|)

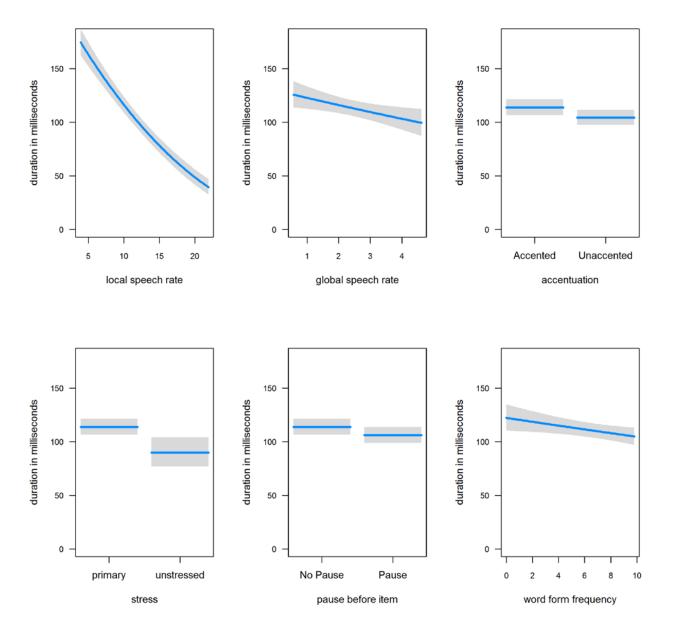
(Intercept) 5.601e-01 1.306e-02 1.814e+02 42.874 < 2e-16 ***

Categoryunn 4.953e-02 6.868e-03 3.170e+01 7.211 3.64e-08 ***

AccentuationUnaccented -1.445e-02 3.072e-03 1.016e+03 -4.706 2.88e-06 ***
```

logWordFormFreq -2.615e-03 1.117e-03 3.060e+01 -2.341 0.02591 *

FirstSyllBaseStressunstressed -3.798e-02 1.141e-02 3.120e+01 -3.327 0.00226 **

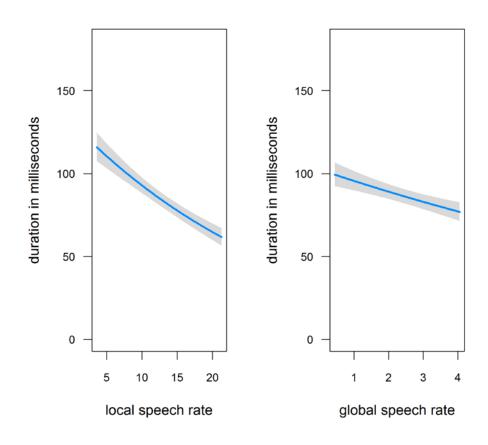

LocSpeech -1.237e-02 7.235e-04 7.480e+02 -17.099 < 2e-16 ***

GlobalSpeechRate -9.715e-03 3.833e-03 9.771e+02 -2.535 0.01141 *

PrePausePause -1.160e-02 2.798e-03 1.029e+03 -4.145 3.68e-05 ***

PostPausePause -6.070e-03 3.111e-03 1.029e+03 -1.951 0.05130 .

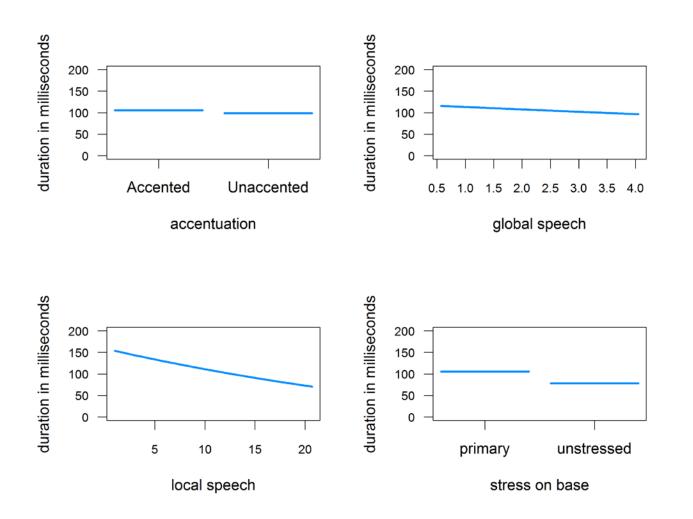
un-model: Base vs. unn



im-model: m#m vs. m#p

Fixed effects:

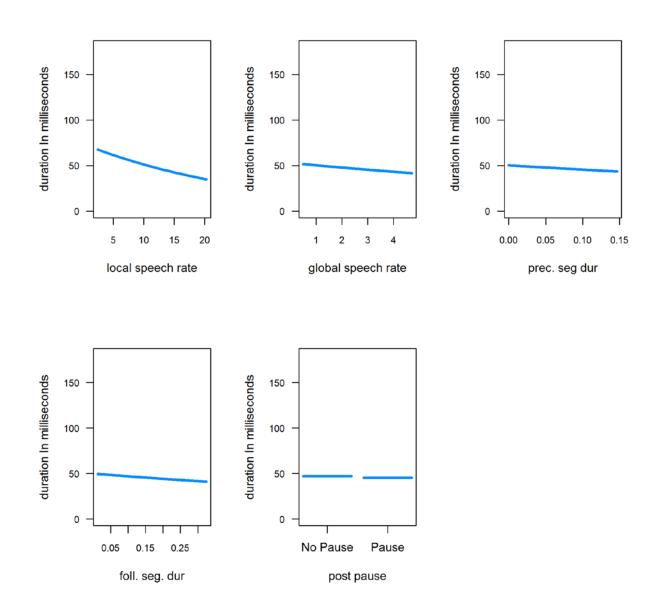
	Estimate Std. Error df t value Pr(> t)
(Intercept)	7.792e-01 4.280e-03 2.870e+02 182.045 < 2e-16 ***
Categorymp	-1.251e-02 2.695e-03 3.780e+01 -4.644 4.06e-05 ***
FirstSyllBaseStressunstressed	-2.563e-02 3.915e-03 3.690e+01 -6.548 1.15e-07 ***
LocSpeech	-3.561e-03 3.576e-04 6.775e+02 -9.956 < 2e-16 ***
GlobalSpeechRate	-7.102e-03 1.507e-03 9.530e+02 -4.713 2.81e-06 ***
Categorymp:FirstSyllBaseStressunstressed	2.090e-02 5.145e-03 3.690e+01 4.063 0.000243 ***


im-model: m#m vs. m#p

im-model: m#m vs. base

Fixed effects:

im-model: m#m vs. base



in-model: n#n vs. n#V vs. n#t

Fixed effects:

```
Estimate Std. Error
                                          df t value Pr(>|t|)
                         8.951e-01 4.690e-03 3.342e+02 190.844 < 2e-16 ***
(Intercept)
Categoryn#t
                           3.165e-03 2.827e-03 4.270e+01 1.120 0.269147
Categoryn#V
                           -2.085e-02 3.047e-03 4.270e+01 -6.841 2.26e-08 ***
FirstSyllBaseStressunstressed
                                -2.068e-02 5.220e-03 4.710e+01 -3.961 0.000252 ***
LocSpeech
                         -1.872e-03 2.136e-04 8.757e+02 -8.763 < 2e-16 ***
GlobalSpeechRate
                             -2.559e-03 9.416e-04 1.020e+03 -2.718 0.006683 **
PostPausePause
                            -2.138e-03 8.926e-04 1.083e+03 -2.395 0.016799 *
PrecSegDur
                          -4.885e-02 1.743e-02 1.079e+03 -2.803 0.005157 **
FollSegDur
                         -3.029e-02 1.175e-02 1.075e+03 -2.579 0.010047 *
Categoryn#t:FirstSyllBaseStressunstressed 2.637e-02 5.668e-03 4.660e+01 4.652 2.73e-05 ***
Categoryn#V:FirstSyllBaseStressunstressed 1.194e-02 5.599e-03 4.740e+01 2.133 0.038118 *
```

in-model: n#n vs. n#V vs. n#t

Oh and Redford: difference between *un-* and *in-*

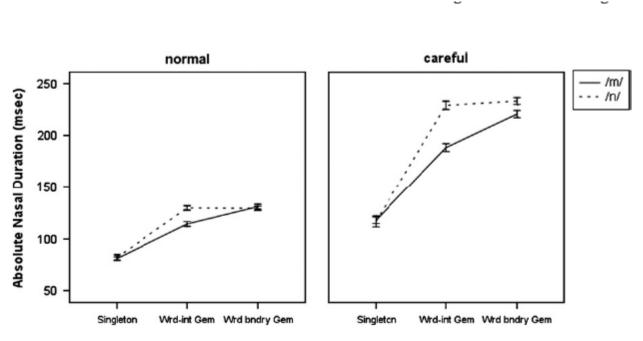
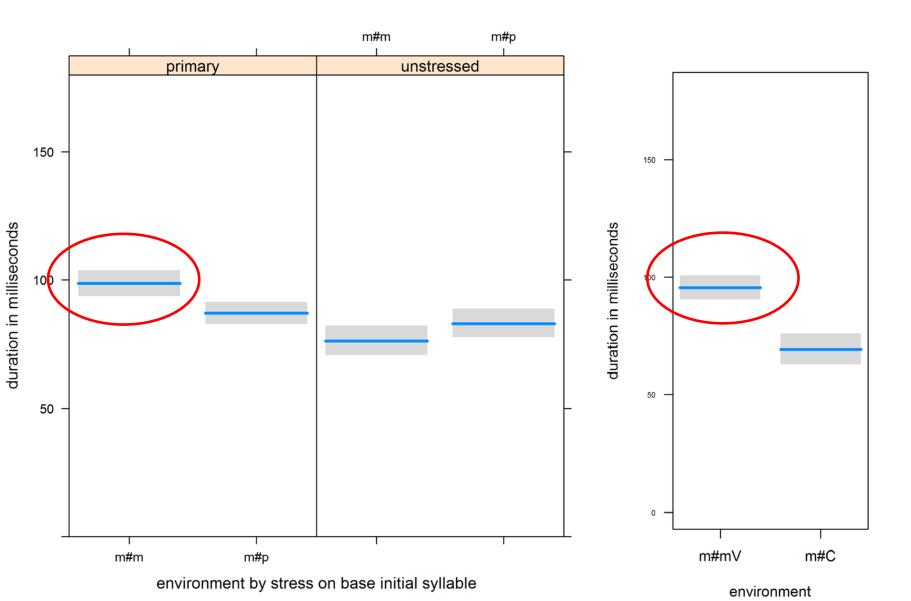
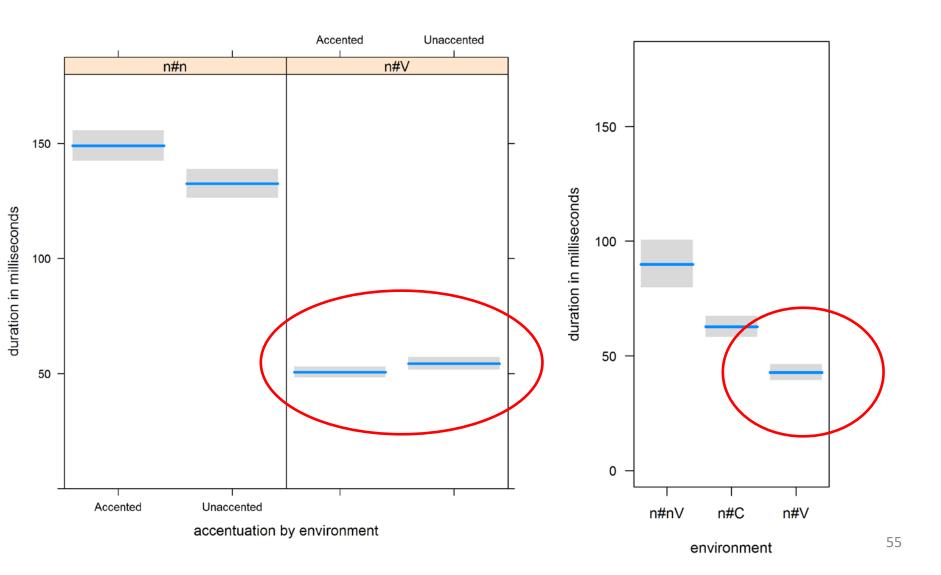




Fig. 2. Absolute nasal duration for word-internal singletons, word-internal geminates and word boundary geminates produced in normal and careful speech.

un- and in-: Corpus vs. Experiment

un- and in-: Corpus vs. Experiment

