Against Bracketing Erasure in English triconstituent compounds:

an investigation of acoustic constituent durations

Annika Schebesta – Heinrich-Heine Universität Düsseldorf
FOR 2373 workshop – project: EMB
PI’s: Gero Kunter, Ingo Plag
Today’s talk

[health\textsubscript{N1} care\textsubscript{N2}] law\textsubscript{N3} corner\textsubscript{N1} [drug\textsubscript{N2} store\textsubscript{N3}]

Does the morphological structure of compounds have an effect on the acoustic durations of N1, N2 and N3?
Lexical Phonology (Kiparsky 1982)

Assumption:

strict division of

- the application of morphological and phonological rules to a lexical item
Lexical Phonology (Kiparsky 1982)

Assumption:

strict division of

- the application of morphological and phonological rules to a lexical item \(
ightarrow\) lexical level
Lexical Phonology (Kiparsky 1982)

Assumption:

strict division of

- the application of morphological and phonological rules to a
 lexical item \(\rightarrow\) lexical level

- the embedding into a syntactic structure and the phonetic
 implementation of a lexical item
Lexical Phonology (Kiparsky 1982)

Assumption:

strict division of

- the application of morphological and phonological rules to a lexical item \rightarrow lexical level

- the embedding into a syntactic structure and the phonetic implementation of a lexical item \rightarrow post-lexical level
Lexical Phonology (Kiparsky 1982)

Assumption:

strict division of

- the application of morphological and phonological rules to a lexical item

- the embedding into a syntactic structure and the phonetic implementation of a lexical item
Lexical Phonology (Kiparsky 1982)

Assumption:

strict division of

- the application of morphological and phonological rules to a lexical item

- the embedding into a syntactic structure and the phonetic implementation of a lexical item
Bracketing Erasure

After each application of a morphological rule, the internal morphological brackets in the complex word are erased.

→ morphological structure is not visible
→ phonetic signal has no access to the morphological structure of the complex word
→ factors related to the morphological structure do not affect the phonetic signal
Bracketing Erasure

$\text{health}_{N_1} \text{ care}_{N_2} \text{ law}_{N_3}$ $\text{corner}_{N_1} \text{ drug}_{N_2} \text{ store}_{N_3}$

\rightarrow phonetic signal cannot reflect the morphological structure of the compound
\rightarrow relations (e.g. embeddedness) between constituents should be undetectable
Contrary assumption

The morphological structure is encoded in the phonetic signal.

Sproat & Fujimura (1993): gradient variation of /l/ realizations according to the morphological boundary they attach to

Hay (2007): un- shorter in words with weaker boundaries (less decomposable), and longer in words with stronger boundaries (more decomposable)

Phonetic realization of segments at a morphological boundary is sensitive to the degree of boundary strength
Contrary assumption

The morphological structure is encoded in the phonetic signal.

Hay & Plag (2004): in suffixed words, inner boundaries are weaker than outer boundaries; suffixes with weaker boundaries are closer to the base

[aim-less]-ness [king-dom]-ful

morphological embeddedness of affixes correlated with boundary strength
Contrary assumption

The morphological structure is encoded in the phonetic signal.

\[
\text{health}_{N1} \; \text{care}_{N2} \; \text{law}_{N3} \quad \quad \quad \text{corner}_{N1} \; \text{drug}_{N2} \; \text{store}_{N3}
\]

→ the phonetic implementation of the three constituents should be different due to the different boundary strengths
Contrary assumption

Kunter & Plag (2016) present the **Embedded Reduction Hypothesis**

In a complex word with more than two constituents, the embedded constituents are acoustically shorter than constituents at higher derivational levels.
Contrary assumption

Embedded Reduction Hypothesis tested with

a) experimental data
b) corpus data
Kunter & Plag (2016)
Kunter & Plag (2016)

\[\text{health}_{N1} \text{ care}_{N2} \text{ law}_{N3} \quad \text{corner}_{N1} [\text{drug}_{N2} \text{ store}_{N3}] \]

Predictions:
a. The embedded constituents are relatively short.
Kunter & Plag (2016)

\[
[\text{health}_{N1} \text{ care}_{N2}] \text{ law}_{N3} \quad \text{corner}_{N1} [\text{drug}_{N2} \text{ store}_{N3}]
\]

Predictions:

a. The embedded constituents are relatively short.
b. The free constituent is relatively long.
Kunter & Plag (2016)

\[\text{health}_{N1} \text{ care}_{N2} \text{ law}_{N3} \quad \text{corner}_{N1} [\text{drug}_{N2} \text{ store}_{N3}] \]

Predictions:
a. The embedded constituents are relatively short.
b. The free constituent is relatively long.
c. This effect is independent from the branching direction.

→ interaction between constituents and branching direction of the compound needed
Kunter & Plag (2016)

\([\text{health} \text{care}] \text{law} \quad \text{corner} \quad \text{drug} \text{store}\]

-data set: experimental data (Kösling 2013, Kösling et al. 2013)
-477 English triconstituent NNN compounds

left = 239 right = 238
Kunter & Plag (2016)

- statistical analysis: lmer modelling

dependent variable: constituent duration

predictors:
- constituent number
- branching
- frequencies of each constituent
- bigram frequency N1N2 and bigram frequency N2N3
- trigram frequency N1N2N3
- accent
- pitch range
- phonological length

random effect: speaker

central interactions:
- constituent number * branching * bigramFreqN1N2
- constituent number * branching * bigramFreqN2N3
Shortcomings

- across-boundary frequencies kept low

- across-boundary frequencies may not be informative

→ therefore: focus on embedded constituent frequencies

 N1N2 for left-branching compounds
 N2N3 for right-branching compounds
left-branching: [N1 N2] N3

N1N2 bigram frequency (=embedded constituent):

N1 is relatively short regardless of N1N2 freq.
N2 is relatively short regardless of N1N2 freq.
N3 is relatively long regardless of N1N2 freq.
left-branching: \([N1 \ N2] \ N3\)

\(N1N2\) bigram frequency (\(=\)embedded constituent):

N1 is relatively short regardless of \(N1N2\) freq.
N2 is relatively short regardless of \(N1N2\) freq.
N3 is relatively long regardless of \(N1N2\) freq.

EXPECTED
right-branching: N1 [N2 N3]

N2N3 bigram frequency (=embedded constituent):

N1 is relatively long with higher N2N3 freq.
N2 is relatively short with higher N2N3 freq.
N3 is relatively short regardless of N2N3 freq.
right-branching: N1 [N2 N3]

N2N3 bigram frequency (=embedded constituent):
N1 is relatively long with higher N2N3 freq.
N2 is relatively short with higher N2N3 freq.
N3 is relatively short regardless of N2N3 freq.

EXPECTED
Results

<table>
<thead>
<tr>
<th>embedded constituent frequency</th>
<th>Kunter & Plag (2016)</th>
<th>implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>left-branching (N1N2)</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure supports ERH predictions</td>
</tr>
<tr>
<td>right-branching (N2N3)</td>
<td>N1 long N2 short N3 short</td>
<td>challenges Bracketing Erasure supports ERH predictions</td>
</tr>
</tbody>
</table>
Corpus Study
Corpus Study

\[\text{[health}_{N1} \text{ care}_{N2}] \text{ law}_{N3} \]

\[\text{corner}_{N1} \text{ [drug}_{N2} \text{ store}_{N3}] \]

- Data from BURSC (data set by Köslin & Plag 2009)
- 451 English triconstituent NNN compounds

left = 331 right = 120
Corpus study

[health$_{N1}$ care$_{N2}$] law$_{N3}$

corner$_{N1}$ [drug$_{N2}$ store$_{N3}$]

Predictions:
a. The embedded constituents are relatively short.
b. The free constituent is relatively long.
c. This effect is independent from the branching direction.
Corpus study

- statistical analysis: lmer modelling

dependent variable: constituent duration

predictors:
- constituent number
- branching frequencies of each constituent
- bigram frequency N1N2 and bigram frequency N2N3
- trigram frequency N1N2N3
- pitch range
- phonological length

random effect: speaker

central interactions:
- constituent number * branching * bigramFreqN1N2
- constituent number * branching * bigramFreqN2N3
left-branching: [N1 N2] N3

N1N2 bigram frequency (=embedded constituent):

N1 is relatively short
N2 is relatively short
N3 is relatively long
left-branching: [N1 N2] N3

N1N2 bigram frequency (=embedded constituent):

N1 is relatively short EXPECTED
N2 is relatively short EXPECTED
N3 is relatively long EXPECTED
right-branching: N1 [N2 N3]

N2N3 bigram frequency (=embedded constituent):

N1 is longer than N2, but shorter than N3
N2 is relatively short
N3 is relatively long
right-branching: N1 [N2 N3]

N2N3 bigram frequency (=embedded constituent):

N1 is longer than N2, but shorter than N3
N2 is relatively short
N3 is relatively long

difference to Kunter & Plag (2016) analysis:

3-way interaction constituent number * branching * bigramFreq N2N3 not significant

→ effect of N2N3 similar for left-branching
left-branching & right-branching
left-branching & right-branching

low bigramFreq N1N2

average bigramFreq N1N2
left-branching & right-branching

low bigramFreq N1N2
average bigramFreq N1N2
high bigramFreq N1N2
left-branching & right-branching

low bigramFreq N1N2

average bigramFreq N1N2

high bigramFreq N1N2
left-branching & right-branching

low bigramFreq N1N2

average bigramFreq N1N2

high bigramFreq N1N2
left-branching & right-branching

low bigramFreq N1N2

average bigramFreq N1N2

high bigramFreq N1N2
Results

<table>
<thead>
<tr>
<th>Embedded constituent frequency</th>
<th>Corpus study</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>left-branching (N1N2)</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure supports ERH predictions</td>
</tr>
<tr>
<td>right-branching (N2N3)</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure no support ERH predictions</td>
</tr>
</tbody>
</table>
Kunter & Plag (2016) & corpus study: comparisons
Kunter & Plag (2016) & corpus study

<table>
<thead>
<tr>
<th>Embedded Constituent Frequency</th>
<th>Kunter & Plag (2016)</th>
<th>Corpus Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>left-branching (N1N2)</td>
<td>N1 short N2 short N3 long</td>
<td>N1 short N2 short N3 long</td>
</tr>
<tr>
<td>right-branching (N2N3)</td>
<td>N1 long N2 short N3 short</td>
<td>N1 short N2 short N3 long</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Across-Boundary Frequency</th>
<th>Kunter & Plag (2016)</th>
<th>Corpus Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>left-branching (N2N3)</td>
<td>N1 short N2 long N3 short</td>
<td>N1 short N2 short N3 long</td>
</tr>
<tr>
<td>right-branching (N1N2)</td>
<td>N1 short N2 short N3 long</td>
<td>N1 short N2 short N3 long</td>
</tr>
</tbody>
</table>
Contrasting ERH and Bracketing Erasure

Bracketing Erasure claims

- no difference in acoustic durations among all constituents of a complex word
- no effect of branching direction on the acoustic duration of constituents

Embedded Reduction Hypothesis claims

- differences in acoustic durations among constituents of a complex word
- shorter durations with embedded constituents, longer durations with free constituents
Contrasting ERH and Bracketing Erasure

<table>
<thead>
<tr>
<th></th>
<th>Kunter & Plag (2016)</th>
<th>corpus study</th>
<th>implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>embedded constituent frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left-branching (N1N2)</td>
<td>N1 short N2 short N3 long</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure supports ERH predictions</td>
</tr>
<tr>
<td>right-branching (N2N3)</td>
<td>N1 long N2 short N3 short</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure partly supports ERH predictions</td>
</tr>
<tr>
<td>across-boundary frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>left-branching (N2N3)</td>
<td>N1 short N2 long N3 short</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure partly support ERH predictions</td>
</tr>
<tr>
<td>right-branching (N1N2)</td>
<td>N1 short N2 short N3 long</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure no support for ERH predictions</td>
</tr>
</tbody>
</table>
Contrasting ERH and Bracketing Erasure

Bracketing Erasure

cannot explain the effects found in both studies.

Embedded Reduction Hypothesis

cannot explain all the effects, either.

More research needed:

experimental data, controlled for n-gram frequencies, not only duration but also phonetic reduction taken into account, ...
References

Contrasting ERH and Bracketing Erasure

<table>
<thead>
<tr>
<th>embedded constituent frequency</th>
<th>Kunter & Plag (2016)</th>
<th>corpus study</th>
<th>implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>left-branching (N1N2)</td>
<td>N1 short N2 short N3 long</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure supports ERH predictions</td>
</tr>
<tr>
<td>right-branching (N2N3)</td>
<td>N1 long N2 short N3 short</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure partly supports ERH predictions</td>
</tr>
<tr>
<td>across-boundary frequency</td>
<td>left-branching (N2N3)</td>
<td>N1 short N2 long N3 short</td>
<td>N1 short N2 short N3 long</td>
</tr>
<tr>
<td>right-branching (N1N2)</td>
<td>N1 short N2 short N3 long</td>
<td>N1 short N2 short N3 long</td>
<td>challenges Bracketing Erasure no support for ERH predictions</td>
</tr>
</tbody>
</table>