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Abstract

Recent research on the acoustic realization of affixes has revealed differences
between phonologically homophonous affixes, for example the different kinds of
final [s] and [z] in English (Plag et al. 2015, Zimmermann 2016). Such results
are unexpected and unaccounted for in widely-accepted post-Bloomfieldian item-
and-arrangement models (Hockett, 1954) which separate lexical and post-lexical
phonology, and in models which interpret phonetic effects as consequences of dif-
ferent prosodic structure. This paper demonstrates that the differences in duration
of final S as a function of the morphological function it expresses (non-morphemic,
plural, third person singular, genitive, genitive plural, cliticized has, and cliticized
is) can be approximated by considering the support for these morphological func-
tions from the words’ sublexical and collocational properties. We estimated this
support using naive discriminative learning, and replicated previous results for En-
glish vowels (Tucker et al., 2018) indicating that segment duration is lengthened
under higher functional load, but shortened under functional uncertainty. We dis-
cuss the implications of these results, obtained with a wide learning network that
eschews representations for morphemes and exponents, for models in theoretical
morphology as well as for models of lexical processing.

1 Introduction

1

Many studies have shown that the phonetic realization of words may depend on the
morphological structure of the word. For example, Kemps et al. (2005b,a), Blazej and
Cohen-Goldberg (2015) showed that free and bound variants of a stem differ acoustically
and that listeners make use of such phonetic cues in speech perception. Paradigmatic
probability has been demonstrated to influence the duration of linking elements in Dutch
compounds (Kuperman et al. 2007) and the frontness of vowels in Russian verbal suffixes
(Cohen 2014a). Syntagmatic probability influences the duration of the regular plural
suffix in English (Rose 2017), and the duration of third person singular -s in English is
subject to both syntagmatic and paradigmatic probabilities (Cohen, 2014b). Some studies

1Acknowledgements and supplemenatry material to be added after acceptance of the paper for pub-
lication.
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have found that the phonetic properties of segments vary according to the strength of the
morphological boundary they are adjacent to (e.g. Smith et al. 2012, Lee-Kim et al. 2013),
others provided evidence that the duration of affixes is dependent on the segmentability
of the affix (e.g. Hay 2007, Plag and Ben Hedia 2018).

Several studies have investigated phonologically homophonous affixes, with quite un-
expected results. Ben Hedia and Plag (2017) find that the nasal consonant of the locative
prefix im- (as in import, implant) is shorter than the one in words with negative in- (im-
possible, impotent). Plag et al. (2015a) investigated multi-functional word-final [s] and [z]
in conversational North American English, using a rather small sample from the Buckeye
Corpus with manual phonetic annotation. Plag et al.’s data showed robust differences
in the acoustic durations of seven kinds of final [s] and [z] (non-morphemic, plural, third
person singular, genitive, genitive plural, clitizied has, and cliticized is, henceforth S).
Basically the same patterns of durational differences hold for New Zealand English, as
shown in a study based on a very large sample with automatic phonetic annotation from
the Quakebox Corpus (Zimmermann 2016a). Seyfarth et al. (2017) also find differences
in stem and suffix durations in English S-inflected words (e.g. frees, laps) compared to
their simplex phonologically homophonous counterparts (e.g. freeze, lapse).

All of these recent findings challenge traditional models of phonology-morphology
interaction and of speech production which postulate that phonetic processing does not
have access to morphological information (e.g. Chomsky and Halle 1968b, Kiparsky 1982,
Levelt and Wheeldon 1994, Levelt et al. 1999b).

In this paper, we concentrate on word final [s] and [z] (from now on S) in English
and address the question of how the differences between the different types of word-final
S observed by Plag and colleagues and by Zimmermann can be explained. Plag et al.
(2015a) discuss a number of possible explanations for their findings, none of which were
found to be satisfactory.

It is well-known from many studies that various (conditional) probabilities predict
aspects of the speech signal (e.g. Jurafsky et al. 2001b,c, Bybee 2001, Bell et al. 2003b,
Pluymaekers et al. 2005b,a, Bell et al. 2009a, Torreira and Ernestus 2009). In the case of
final S, however, the usual measures of experience (lexical frequency, transitional phoneme
probability, neighborhood density, bigram frequency, etc.) cannot account for the differ-
ences in S duration. As reported by Plag et al., inclusion of these measures in regression
models does not render superfluous the factor distinguishing between the different func-
tions realized with S.

In this paper, we follow up on a study by Tucker et al. (2018) which made use of naive
discriminative learning to predict the acoustic duration of the stem vowels of English
regular and irregular verbs. Naive discriminative learning uses wide learning networks
to study the consequences of error-driven learning for language and language processing.
These networks make it possible to study in detail the ‘functional load’ of both sublexical
and collocational features for morphological functions such as realized with the English S
exponent. The study of Tucker et al. calls attention to two opposing forces shaping the
duration of verbs’ stem vowels. A high function load, indexed by good network support
for a verbs’ tense, was found to predict longer vowel duration for the majority of data
points. Conversely, when this functional load is fragmentary, in the sense that several
different semantic functions are all supported, uncertainty increases and vowel duration is
reduced. In what follows, we investigate whether the findings of Tucker et al. generalize
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and also contribute to clarifying the variation in the duration of S as a function of the
morphological function it realizes.

To do so, we proceed as follows. We begin with a more detailed introduction to the
duration of S. We then proceed with a corpus study of S in the full Buckeye, extending and
replicating the results of the original Plag et al. study. This is followed by an introduction
to naive discriminative learning and the network statistics such as activation or activation
diversity that we use to predict the duration of S. Application of these measures to the
Buckeye data shows that indeed these measures provide improved prediction accuracy.
We conclude with a discussion of the theoretical implications of this result, which is
non-trivial as it is obtained with a computational model that eschews form units such
as morphemes or exponents and instead estimates functional load directly from low-level
form features.

2 Final S in English

Homophony has attracted considerable attention in recent years as a testbed for theories
of the mental lexicon. Research on lexemes has shown that homophonous lexemes show
striking phonetic differences (e.g. Gahl 2008a, Drager 2011). Gahl (2008) investigated the
acoustic realization of 223 supposedly homophonous word pairs such as time and thyme
and found that, quite consistently, the more frequent members of the pairs, e.g. time, are
significantly shorter than the corresponding less frequent ones, e.g. thyme. This can be
taken as evidence that two homophonous lexemes cannot be represented exclusively by
one identical phonological form with information on their combined frequency, but that
the individual frequencies must be stored with the respective lemmas and have an effect
on their articulation. Similarly, Drager (2011) found that the different functions of like
go together with different acoustic properties. Whether like is used as an adverbial, as a
verb, as a discourse particle, or as a quotative lexeme has an effect on several phonetic
parameters, i.e. the ratio of the duration of /l/ to vowel duration, on the pitch level and
on the degree of monophthongization of the vowel /aI/. These fine differences indicate
that homophony of two or more lemmas at the phonetic level may not exist.

Similar findings seem to hold for stems or affixes. Thus, Kemps et al. (2005b) provide
evidence that free and bound variants of a base (e.g. help without a suffix as against
help in helper) differ acoustically, even if no morpho-phonological alternations apply.
Furthermore, these authors show, probably contrary to what most structural linguists
would expect, that Dutch and English listeners make use of such phonetic cues in speech
perception (see also Kemps et al. 2005a). Smith et al. (2012) found acoustic differences
(in durational and amplitude measurements) between morphemic and non-morphemic
initial mis- and dis- (as in, e.g., distasteful vs. distinctive).

The homophony of morphemic sounds and their non-morphemic counterparts in En-
glish have also been investigated for some time. Walsh and Parker (1983) tested plural /s/
against non-morphemic /s/, while Losiewicz (1992) looked at the past tense allomorphs
/t/ and /d/ . Both of these early studies found differences in duration between morphemic
and non-morphemic sounds, but the studies suffer seriously from various methodological
shortcomings concerning experimental setup, insufficient inclusion of important covari-
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ates, and, from today’s perspective, unsatisfactory statistical analyses.2

More recently, Plag and colleagues investigated final S in a sample of 644 English
words (segmented manually) from the Buckeye speech corpus (Plag et al. 2015). They
measured the absolute duration of S in non-morphemic /s/ and /z/ , and of six different
English /s/ and /z/ morphemes (plural, genitive, genitive plural, and 3rd person singular,
as well as cliticized forms of has and is), as well as their relative duration (i.e. the ratio of
S duration and whole word duration). As the present study is primarily geared towards
explaining the findings of that study, we will look at them in more detail.

The authors used regression models that predicted the absolute or relative duration of
S based on the type of morpheme and a number of covariates that are known to influence
segmental durations, such as local speech rate, stem duration, base frequency, previous
mention, bigram frequency, neighborhood density, the number of consonants in the rhyme
before the final S, the voicing of S, the following phonetic context, and the position of
the word in the utterance.

In general, there are fewer significant contrasts between the different morphological
categories for voiced than for unvoiced realizations of S, which is partly due to lack of sta-
tistical power (the voiced subset is quite small) and partly due to the fact that the voiced
instances are usually shorter, which makes it more difficult to find significant differences.
Still, there are four significant contrasts for voiced realizations: 3rd person singular [z] is
shorter than plural, genitive and genitive-plural [z], and plural [z] is significantly longer
than the voiced is clitic.

For unvoiced S, there are 10 significant contrasts (out of 21 possible possible pair-wise
contrasts). In this subset, non-morphemic S is longer than all types of morphemic S.
The two suffixes (plural and 3rd person singular) are shorter than non-morphemic S, but
longer than the two clitics of has and is. The clitics are significantly shorter than 3rd
person singular S and plural S.

With relative durations, there are even more significant contrasts (eight for /z/ and
twelve for /s/), patterning similarly to the absolute duration differences, i.e. contrasts
between plural and the rest for voiced realizations, and between non-morphemic, suffixal
and clitic S for unvoiced realizations.

In another study of conversational speech, Zimmermann (2016a) found phonetic effects
in New Zealand English that are very similar to those of Plag et al. (2015). The same
durational contrasts were found, plus a few more. Zimmermann’s results were based on a
very large sample of over 6900 automatically segmented words from the Quakebox Corpus
(Walsh et al., 2013).

In summary, both Plag et al. (2015) and Zimmermann (2016) have found rather
complex patterns of durational differences between different types of S in conversational
speech.3 The differences vary with the voice feature of the S, with voiced realization

2In fact, a reanalysis of both data sets using mixed effect regression and additional covariates showed
that the data do not bear out the effects that the authors claimed they did.

3In a recent experimental study, Seyfarth et al. (2017) investigated homophone pairs and found suffixal
[s] and [z] to be longer than non-morphemic [s] and [z] in otherwise homophonous monosyllabic word
pairs. This seems to contradict the findings from the conversational speech data. However, 20 out of
the 26 stimuli pairs had final [z], and not [s], and 16 out of the 26 stimuli were plurals. This means that
the majority of the morphemic stimuli were voiced plurals. Interestingly, both Plag et al. (2015) and
Zimmermann (2016) find that voiced plural S is indeed significantly longer than non-morphemic voiced
S, which is in line with Seyfart et al.’s results for this constellation of voicing and morphemic status.
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showing different contrasts between different types of S than unvoiced realizations. In
their theoretical discussion, the authors show that no extant theory can account for these
facts. Strictly feed-forward models of speech production (such as Levelt et al. 1999b) or
theoretical models of morphology-phonology interaction (e.g. Kiparsky 1982, Bermúdez-
Otero 2018) rely on the distinction of lexical vs. post-lexical phonology and phonetics,
and they exclude the possibility that the morphemic status of a sound influences its
phonetic realization since this information is not available at the articulation stage.

Prosodic phonology (e.g. Nespor and Vogel 2007) is a theory in which prosodic con-
stituency can lead to phonetic effects (see, for example, Keating 2006, Bergmann 2015).
However, this approach is unable to explain the patterning of the contrasts, too, since
most of the durational contrasts cannot be attributed to differences in prosodic configu-
rations.

It is conceivable that exemplar models (e.g. Goldinger 1998, Bybee 2001, Pierrehum-
bert 2001, 2002, Johnson 2004a, Gahl and Yu 2006) may be able to accommodate the
findings, but without an open-source implementation, it is not possible to test formally
whether this is indeed the case.

It is presently unclear how the observed differences can be accounted for. In this
paper we investigate whether these differences can be understood as a consequence of
error-driven learning of words’ segmental and collocational properties. In order to do
so, we first extend Plag et al. original study, which was based on a small and manually
segmented sample from the Buckeye corpus, to the full Buckeye corpus. After replicating
the differences in S duration, we introduce naive discriminative learning, and train a
wide learning network on the Buckeye corpus. Three measures derived from the resulting
network are found to be predictive for S duration, and improve on a statistical model
that includes a factor for the different functions that can be realized with S. We conclude
with a discussion of the implications of our modeling results for theoretical morphology
and models of lexical processing.

3 S duration in the Buckeye corpus

Plag et al. (2015b) based their investigation on a sample from the Buckeye corpus. The
Buckeye Corpus is a corpus of conversational speech containing the recordings from 40
speakers in Columbus, Ohio, speaking freely with an interviewer. The corpus provides
orthographic transcriptions as well as wide and narrow time-aligned phonetic transcrip-
tions at the word and segment level. We redid the analysis of Plag et al. (2015b) on the
full Buckeye corpus, using the segmentations that this corpus makes available.

We extracted all words which end in [s] or [z], resulting in a total of 34559 S segments,
12126 of which were voiced. Extraction was based on the narrow phonetic transcription.
Information about the grammatical status of a given S instance was coded automatically
on the basis of the part-of-speech information of the target word and the following word
as provided in the corpus.

For this substantially larger dataset, a Box-Cox analysis indicated a logarithmic trans-
formation of S duration. The predictor of interest is the morphological function that the S
exponent realizes (ExponentFor), with levels non-morphemic, 3rdsg, gen, has/is,

pl-gen, plural, and non-morphemic as reference level. Unlike Plag et al. (2015b), we

5



collapsed the has and is clitics into one class, as it is not possible to differentiate between
the two by means of automatic pre-processing.

Following Plag et al. (2015b), we included several predictors as controls. A factor
Voicing (with levels voiced and unvoiced) was implemented indicating whenever a pe-
riodic pitch pulse was present in more than 75 percent of the duration of the segment. A
factor MannerFollowing coded for the manner of articulation of the segment follow-
ing S (levels absent, approximant, fricative, nasal, plosive, vowel). Random
intercepts for speaker and word were also included. A factor Cluster with levels
1, 2 and 3 was included to control for the number of consonants in the coda, where 1

equals to a vowel-S sequence. Two covariates were included, the local speech rate and
the duration of the base word. Speaking rate was calculated by dividing the number of
syllables in a phrase by the duration of that phrase. As in the Plag et al. study, base
word duration was strongly correlated with word frequency (Spearman-rank correlation
r = -0.69), and to avoid collinearity in the tested data, frequency was not included as
predictor (see Tomaschek et al. 2017 for effects of collinearity in regression analyses). We
used linear mixed-effect regression as implemented in the lmer package (version: 1.1-12
Bates et al., 2015), using treatment coding for all factors.

Table 1: Coefficients and associated statistics for the mixed-effects model fit to the log-
transformed duration of S, using the full Buckeye corpus.

Estimate Std. Error df t value
Intercept -1.52 0.02 148.39 -69.93
ExponentFor = 3rdSg -0.10 0.02 1372.72 -5.65
ExponentFor = GEN -0.15 0.03 5647.45 -5.46
ExponentFor = has/is -0.15 0.02 1416.32 -7.33
ExponentFor = PL-GEN -0.12 0.11 5778.72 -1.08
ExponentFor = plural -0.10 0.01 1380.73 -8.98
Voicing = unvoiced 0.23 0.01 28924.37 35.66
Cluster = 2 -0.19 0.01 5778.52 -26.03
Cluster = 3 -0.29 0.01 6103.94 -19.73
MannerFollowing = app -0.31 0.01 28822.04 -37.63
MannerFollowing = fri -0.52 0.01 28900.28 -71.39
MannerFollowing = nas -0.47 0.01 28872.42 -31.94
MannerFollowing = plo -0.51 0.01 28906.19 -72.46
MannerFollowing = vow -0.43 0.01 28909.55 -62.94
LocalSpeechRate -0.08 0.00 28837.16 -38.43
BaseDuration 0.19 0.01 16193.21 32.88

Table 1 presents the estimates of the coefficients of the model and the corresponding
standard errors and t-values. We used the Tukey HSD test to establish which morpho-
logical functions differed in mean duration. Compared to monomorphemic words ending
with S, S duration was shorter when S realized plural, 3rdSg, GEN, has/is. Plag et
al. observed a difference as well for genitive plurals, but for the full Buckeye this contrast
was not supported. Furthermore, as in the study of Plag et al., the S was articulated with
shorter duration when realizing has or is compared to when it realizes plurals or the third
person singular. Plag et al. observed an interaction of ExponentFor by Voicing, but
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this interaction did not replicate for the enlarged dataset. The differences between the
present analysis and that of Plag et al. have two possible sources. First, Plag et al. man-
ually inspected all data points and curated the automatic annotations and segmentations
where necessary. By contrast, we followed the annotations and segmentations provided
by the Buckeye corpus. Second, by considering the full corpus, the present analysis is
somewhat more robust against spurious small-sample effects. For instance, in the dataset
of Plag et al., there were only 81 voiced S tokens, as opposed to 563 voiceless S tokens.

Table 2 summarizes a comparison of the significant contrasts for unvoiced S in Plag et
al.’s small sample with those found in the full corpus used here. Apart form one contrast,
all contrasts are significant in both data sets.

S PL 3RDSG GEN HAS/IS PL-GEN

S yes yes yes yes no
PL yes
3RDSG yes
GEN
HAS/IS
PL-GEN

Table 2: Significant contrasts for unvoiced S in Plag et al.’s small sample and the present
replication study (see table 1). ‘Yes’, indicates an effect found in both studies, ‘no’
indicates an effect found only in the small sample, for alpha<0.05 (under Tukey’s HSD).

Two things are important to note. First, the main finding of Plag et al. (2015b)
is the difference in duration between unvoiced non-morphemic S (longest), clitic S and
suffix S (shortest). This difference is also found in the larger data set with automatic
annotation. Second, while in the Plag et al. data set there was a difference in duration
between voiced and unvoiced S, this difference is no longer present in the larger data set.
The most plausible reasons for this is that the subset of voiced S in Plag et al.’s data set
was quite small (only 81 tokens, as against 563 unvoiced tokens), which may have led to
unreliable estimates for this subset.

To summarize, we have replicated Plag et al. (2015b)’s main findings for a much larger
data set derived from the same speech corpus. However, we still lack an explanation for
the durational patterns observed. In the next following sections we will provide such an
explanation, arguing that durational variation in word-final S is chiefly influenced by how
strongly the final S is associated with its morphological function as a result of learning.
In what follows, we address the question of whether naive discriminative learning can
shed further light on why these durational differences arise.

4 Naive Discriminative Learning

Naive discriminative learning (NDL) is a computational modeling framework that is
grounded in simple but powerful principles of discrimination learning (Ramscar and
Yarlett, 2007, Ramscar et al., 2010, Baayen et al., 2011, Rescorla, 1988). The general cog-
nitive mechanisms assumed in this theory have been shown to be able to model a number
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of important effects observed in animal learning and human learning, for example the
blocking effect (Kamin 1969) and the feature-label ordering effect (Ramscar et al. 2010).
NDL has recently been extended to language learning and language usage, and several
studies have shown that it can successfully model different morphological phenomena
and their effects onto human behavior, e.g. reaction times in experiments investigating
morphological processing (e.g. Baayen et al. 2011, Blevins et al. 2016, see Plag 2018:
section 2.7.7 for an introduction).

Discriminative learning theory rests on the central assumption that learning results
from exposure to informative relations among events in the environment. Humans (and
other organisms) use these relations, or ‘associations’, to build cognitive representations
of their environments. Crucially, these associations (and the resulting representations)
are constantly updated on the basis of new experiences. Formally speaking, the associ-
ations are built between features (henceforth cues) and classes or categories (henceforth
outcomes) that co-occur in events in which the learner is predicting the outcomes from the
cues. The association between cues and outcomes is computed mathematically using the
so-called Rescorla-Wagner equations (Rescorla and Wagner, 1972, Wagner and Rescorla,
1972, Rescorla, 1988:see Appendix A for a technical description). The equations work in
such a way that the association strength or ‘weight’ of an association between a cue and an
outcome increases with every time that this cue and outcome co-occur. Importantly, this
association weight decreases whenever the cue occurs without the outcome being present
in a learning event. During learning, weights are continuously recalibrated. At any stage
of learning, the association weight between a cue and an outcome can be conceptualized
as the support which that specific cue can provide for that specific outcome given the
other cues and outcomes which had been encountered during the learning history.

Let us look at an example of how our understanding of the world is constantly mod-
ulated by the matches and mismatches between our past experiences and what we actu-
ally observe. Our example is a phenomenon known as ‘anti-priming’ found by Marsolek
(2008). He presented speakers with sequences of two pictures, and asked these speakers
to say the name of the second picture. The critical manipulation was implemented in
the first picture, which could be either similar to some extent to the target picture (e.g.,
grand piano, followed by table), or unrelated (e.g., orange followed by table). In contrast
to typical priming findings, Marsolek observed that speakers responded more quickly for
unrelated pairs compared to related pairs. This ‘anti-priming’ – caused by prior presenta-
tion of a related picture – follows straightforwardly from the learning rule of Rescorla and
Wagner (1972). The weights of visual features (i.e. the cues) that are shared by grand
piano and table, such as having legs and a large flat surface, are strengthened for grand
piano but weakened for table when the picture of the grand piano is presented. Slower
response times in this case of anti-priming are a direct consequence of critical features
losing strength to table compared to cases in which a visually unrelated prime, such as
an orange, had been presented.

Taking a morphological example, the association of the phonological string aIz with
a causative meaning (‘make’) in English would be strengthened each time a listener
encounters the word modernize, and weakened each time the listener hears the words size
or eyes. The association strengths resulting from such experiences influence language
processing in both production and comprehension.

Technically, the mathematical engine of NDL, i.e. the Rescorla-Wagner equations,
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is an optimized computational implementation of error-driven discrimination learning.
This engine can be viewed as implementing ‘incremental regression’ (for a nearly iden-
tical algorithm from physics see Widrow and Hoff (1960) and for a Bayesian optimized
algorithm, Kalman (1960)). NDL was first applied to large corpus data and used to study
chronometric measures of lexical processing by Baayen et al. (2011). An extension of the
learning algorithm is reported in Sering et al. (2018b). Implementations are available
both for R (Shaoul et al., 2014) and Python (Sering et al., 2018a).

Other approaches to learning are available, for instance the Bayesian model presented
in Kleinschmidt and Jaeger (2015). Where NDL comes into its own, compared to models
based in probability theory, is when there are thousands or tens of thousands of dif-
ferent features (cues) that have to be learned to discriminate equally large numbers of
classes (outcomes). Cues compete for outcomes in often unforeseeable ways reminiscent
of chaotic systems, which is why it is a truly daunting challenge to capture the dynam-
ics of such systems with probabilities defined over hand-crafted hierarchies of units (i.e.
with probabilistic statistics). Errors at lower levels of the hierarchy tend to propagate
to higher levels, and render the performance of such models less than optimal. This is
why in computational linguistics, there is a strong movement in the direction of end-to-
end models which by-pass the engineering by hand of intermediate representations using
neural networks.

NDL adopts this end-to-end approach, but does not make use of the deep neural
networks of machine learning, but instead makes use of the simplest possible network ar-
chitecture, with just an input layer and an output layer, without any hidden layers. NDL
thus offers a simple method for assessing the consequences of discrimination learning that
has hardly any free parameters (namely, only a learning rate, typically set to 0.001, and
the maximum amount of learning λ, set to 1.0). Consequently, once the representations
for the input and output layer of the network have been defined, and learning rate and
λ have been set, its performance is determined completely by the corpus on which it is
trained.

NDL also differs from standard applications of neural networks in machine learning
in that it uses very large numbers of input and output features. We therefore refer to the
NDL networks as ‘wide learning’ networks. The weights of these networks are updated
incrementally by applying the learning rule of Rescorla and Wagner to so-called learning
events. Learning events are defined as moments in learning time at which a set of cues
(features) and a set of outcomes (classes) are evaluated jointly. Association weights
between cues and outcomes are strengthened for those outcomes that were correctly
predicted, and weakened for all other outcomes. For technical details, see Milin et al.
(2017b) and Sering et al. (2018b), for a simple introductory implementation see Plag
(2018:section 7.4.4).

This approach to simulate language learning has proved useful for, e.g., modeling
child language acquisition (Ramscar et al., 2010, 2011, 2013a,b), for disentangling lin-
guistic maturation from cognitive decline over the lifespan (Ramscar et al., 2014, 2017),
for predicting reaction times in the visual lexical decision task (Baayen et al., 2011,
Milin et al., 2017b) and self-paced reading (Milin et al., 2017a), as well as for auditory
comprehension (Baayen et al., 2016b, Arnold et al., 2017). The computational model
developed by Arnold et al. is based on a wide learning network that has features derived
automatically from the speech signal as input. This model outperformed off-the-shelf
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deep learning models on single-word recognition, and shows hardly any degradation in
performance when presented with speech in noise (Shafaei Bajestan and Baayen, 2018).

By adopting an end-to-end approach with wide learning, naive discriminative learn-
ing approaches morphology, the study of words’ forms and meanings, from a very dif-
ferent perspective than the standard post-Bloomfieldian hierarchical calculus based on
phonemes, morphemes, and words. The relation between form and meaning is addressed
directly, without intervening layers of representations. In what follows, we will make use
of wide learning networks primarily as a convenient tool from machine learning. In the
discussion section, we will briefly return to the question of the implications of successful
end-to-end learning for morphological theory.

The present study follows up on Tucker et al. (2018), who used NDL to predict
the duration of stem vowels of regular and irregular verbs in English in the Buckeye
corpus. Their wide learning network had diphones as cues, and as outcomes both content
words (or more specifically, pointers to the meanings of content words) and morphological
functions (such as plural or clitic has). In what follows, we refer to these pointers to
meanings/functions as lexomes (see Milin et al., 2017b: for detailed discussion). Tucker et
al. observed that prediction accuracy of statistical models fit to vowel duration improved
substantially when classical predictors such as frequency of occurrence and neighborhood
density were replaced by predictors grounded in naive discriminative learning.

Following their lead, we implemented a network that has morphological function
lexomes as outcomes, but restricted these to those that are implicated with English
word-final S: clitic, genitive plural, genitive singular, plural noun, singu-
lar noun, third person verb, verb, verb participle, past-tense verb,, and
other. The number of morphological functions is larger than that examined in the orig-
inal Plag et al. study, as we also include forms such as pass for past tense or participle
passed where the S is word-final as a result of reduction.

The findings by Tucker et al. (2018) indicate that speakers have to balance opposing
forces during articulation, one that seeks to lengthen parts of the signal in the presence of
strong bottom-up support and one that seeks to shorten them in case of high uncertainty.
To parameterize these forces, we derived three different quantitative measures from the
NDL wide learning network which are used as predictors of S duration: the S lexomes’
activations, their priors, and their activation diversities. We will discuss each in turn.

A lexome’s activation gauges the bottom-up support for that lexome given the cues
in the input. The activation for a given lexome is obtained simply by summation of the
weights on the connections from those cues that are instantiated in the input to that
outcome. It thus is a measure of the cumulative evidence in the input.

A lexome’s prior is a measure of baseline activation. It is obtained by calculating the
L1-norm (i.e. the sum of the absolute values) of the vector of the weights of all cues to
the pertinent lexome outcome. 4 The prior can be understood as a measure of network
entrenchment. It is a network statistic that is independent of the input that captures
long-term default expectations.

Finally, a lexome’s activation diversity is a measure of the extent to which the input

4The L1-norm is related to the L2-norm, which is the Euclidean distance. For example, the Euclidean
distance for the vector (-3, -4) is 5 (by Pythagoras), but the L1-norm is 7, the distance traveled from the
origin to the point (-3,-4) when movement is possible only along the horizontal axis or along the vertical
axis.
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makes contact with the lexicon. Activation diversity is obtained by first calculating the
activations for all outcomes, and then calculating the L1-norm for the resulting vector of
activations. One can think of this measure as quantifying the extent to which the cues in
the input perturb the state of the lexicon. If the cues were to support only the targeted
outcome, leaving all other outcomes completely unaffected, then the perturbation of the
lexicon would be relatively small. However, in reality, learning is seldom this crisp and
clear-cut, and the states of outcomes other than the targeted ones are almost always
affected as well. In summary, the more the lexicon as a whole is perturbed, the greater
the uncertainty about the targeted lexomes will be.

Tucker et al. (2018) observed that vowel duration decreased with activation diversity.
When uncertainty about the targeted outcome increases, acoustic durations decrease (see
also for further examples of shortening under uncertainty Kuperman et al. (2006) and
Cohen (2014b). Arnold et al. (2017) observed, using an auditory word identification task,
that words with low activation diversity (i.e., with short vectors that hardly penetrate
lexical space) were quickly rejected, whereas words with large activation diversity (i.e.,
with long vectors that reach deep into lexical space) were more likely to be identified,
but at the cost of longer response times.

Tucker et al. used diphones derived from the phonetic transcription of the Buckeye
speech to predict vowel duration. It is noteworthy that the direction of learning, from
diphone cues to lexome outcomes, is exactly opposite to the flow of processing from
conceptualization to articulation in the weaver model (Levelt et al., 1999a) and the
model of Dell (1986b). Nevertheless, the present architecture is well motivated, for several
reasons.

First, NDL makes the simplifying assumption that each outcome is modeled indepen-
dently from all other outcomes. This assumption motivates why NDL is referred to as
naive discriminative learning. Because outcomes are independent, we can zoom in on a
simple network with multiple cues and only one outcome without loss of generality. If
this outcome is a diphone, and the cues are lexomes, then the assumption is that the
presence or absence of a diphone in a word is determined by combinations of words, i.e.,
by the way words pattern in utterances and collocations. This clashes with the general
intuition that the (di)phones of a word are a property of that word and not a property of
combinations of words. By contrast, if the outcome is a lexome and the cues are diphones,
we capture the intuition that words are discriminated by their (di)phones.

Second, in the case in which learning events consist of single words, predicting the
diphone cues from a single lexome results in learning the relative frequencies with which
word-diphone pairs occur (cf. Ramscar et al., 2010). It is only when multiple cues, that
occur across the word forms of many different lexomes, are used to predict lexomes that
the network learns to discriminate between lexomes given the cues. This is why the
production network in the model for reading out loud by Hendrix (2015) is trained from
sound to meaning rather than from meaning to sound.

Third, any production system must have some form of feedback control so that the
sensory consequences of speaking can be evaluated properly. Without such feedback,
which comprises sensory feedback from the articulators as well as proprioceptive feedback
from hearing one’s own speech, learning cannot take place (see Hickok, 2014:for detailed
discussion). For error-driven learning to be at all possible, distinct articulatory and
acoustic targets must be set up before articulation, against which the feedback from
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the articulatory and auditory systems can be compared. In what follows, the diphone
outcomes are a crude approximation of the speaker’s acoustic targets, and the connections
from the diphones to the lexomes are part of the speech control loop (see Hickok, 2014:for
further discussion of this control loop).

Tucker et al. (2018) observed that prediction accuracy decreases when instead of
using the diphones in the transcription of what speakers actually said, the diphones in
the dictionary forms are used. We therefore worked with diphones derived from the actual
speech. However, we considered a broader range of features as cues.

Several studies that made use of discriminative learning worked with two networks,
one predicting lexomes from form cues, and the other predicting lexomes from lexomes
(Baayen et al., 2016b, Milin et al., 2017a,b, Baayen et al., 2016a). Similarity between
vectors in lexome-to-lexome networks, typically evaluated with the cosine similarity mea-
sure, reflect semantic similarity as in standard distributional models of semantics (Lan-
dauer and Dumais, 1997, Lund and Burgess, 1996, Shaoul and Westbury, 2010, Mikolov
et al., 2013). Just as for form-to-lexome models, activations, priors, and activation di-
versity measures can be calculated for lexome-to-lexome models. The lexome outcomes
of form-to-lexome models are conceptualized as pointers to the semantic vectors in the
lexome-to-lexome models.

Instead of using predictors from both form-to-lexome and lexome-to-lexome models,
the present study opted for an exploratory single network approach in which cues and
outcomes could comprise both triphones and lexomes. Just as in models for distributional
semantics, we placed an n-word window around a given target word with S, and restricted
cues and outcomes to features within this window. We created a total of 38 NDL networks,
varying window size and the features selected for cues and outcomes. Table 3 illustrates
different choices for cues and outcomes, given the phrase the small dogs bark at the
cat, where dogs is the pivotal word carrying S. Examples 1, 2 and 5 illustrate models
in which lexomes are outcomes, examples 3-4 have diphones as outcomes. Example 1
has only diphones as cues, this model is a standard form-to-lexome network. Example
2 has lexomes as cues and lexomes as outcomes, this is a standard lexome-to-lexome
network. Model 3 seeks to predict diphones from lexomes. Given the experiences of
Hendrix (2015), this model is expected to underperform. The same holds for model 4,
which adds diphones as cues. However, model 5 is again of more interest as it combines
lexome cues and diphone cues to predict lexome outcomes; here the singular and plural
lexomes of dog, and the plural lexome.

Table 3: Possible cue-outcome configurations for the phrase the small dogs bark at the
cat using a 5-word window centered on dogs.

Cues Outcomes
1 T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t dogs dog plural
2 the small dogs bark at dogs dog plural
3 the small dogs bark at ld dO Og gz zb

4 the small dogs bark at
T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t ld dO Og gz zb

5 the small dogs bark at
T@ @s sm m6 6l ld dO Og gz zb ba ar rk k@ @t dogs dog plural
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The total of 38 networks is a result of different window sizes and different selections of
features for cues and outcomes. Models were trained by moving different word windows
across the Buckeye corpus5. The window was moved across the corpus such that each
word token was in the center of the window once. Consequently, a given S word will have
occurred in each of the positions in the window. Each window provided a learning event
at which prediction accuracy was evaluated and connection weights were recalibrated.
Outcomes of special interest are the lexomes representing the morphological functions
of the S: clitic, genitive plural, genitive singular, plural noun, singular
noun, third person verb, verb, verb participle, past-tense verb, and other.

We then used random forests (as implemented in the party package for R) to clarify
which predictors derived from these networks had the largest variable importance. The
optimal network that emerged from this analysis is the one with the 5-words window
and the structure of example 5. Critical lexomes were predicted from all lexomes and
all diphones within a 5-word window centered on the target word. As expected, models
predicting diphone outcomes from lexome and or diphone cues underperformed. Given the
literature on conditional probabilities for upcoming (or preceding) information (Jurafsky
et al., 2002, Pluymaekers et al., 2005b, Tremblay et al., 2011, Bell et al., 2009b), such
as the probability of the current word given the next word, we included in our survey
of cue and outcome features windows of size three, with the target word in either first
or second position. The corresponding networks lacked precision compared to the above
network trained on learning events of five words6. The latter network is also sensitive
to co-occurrence of the target word with the preceding and upcoming word, but it is
sensitive as well to co-occurrence with words further back and further ahead in time.

In the light of the literature on boundary strength and its consequences for lexical
processing (Seidenberg, 1987, Weingarten et al., 2004, Hay, 2002, 2003, Hay and Baayen,
2002), we considered separately the activation and activation diversity calculated for the
diphone straddling the boundary between stem and S on the one hand, and the activation
and activation diversity calculated from all other remaining cues (lexomes and diphones).
This resulted in a total of 5 predictors:

1. PriorMorph: the prior (L1-norm) for weights from a cue set to a word’s inflec-
tional lexome.

2. ActFromBoundaryDiphone: the activation of an inflectional lexome by the
boundary diphone.

3. ActFromRemainingCues: the activation of an inflectional lexome by all other
(lexome and diphone) cues.

5The learning rate αβ was set to 0.001 and λ was set to 1.0; these are the default settings, and these
parameters were never changed.

6For instance, we compared statistical models using the predictors derived from the model with a five-
word window with statistical models with predictors derived from models using three-word windows, with
the target word either at the left or at the right position. Statistical models with measures derived from
the NDL networks based on three-word windows performed worse, with larger ML-scores (+ 23.31 /
+83.16) than the statistical model based on the network model trained with a five-word window. We
also tested the performance of a statistical model based on an NDL network trained with a five-word
window, but using only the diphones but not the words. The resulting statistical model yielded a higher
ML-score as well (+ 160.16). These three alternative mixed models had as many degrees of freedom as
the five-word model (31), hence all these alternative models underperformed in terms of goodness of fit.
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4. ActDivFromBoundaryDiphone: the activation diversity calculated over the
vector of activations over all inflectional lexomes of S, given the boundary diphone
as cue.

5. ActDivFromRemainingCues: the activation diversity, again calculated over the
vector of activations of all inflectional lexomes, but now using the remaining cues
in the learning event.

There are nine values that PriorMorph can assume, one value for each of the nine
inflectional lexomes that we distinguished (clitic, genitive plural, genitive singu-
lar, plural noun, singular noun, third person verb, verb, verb participle,
past-tense verb, and other). The boundary diphone will usually differ from word
to word depending on the stem-final consonant and the specific realization of the S. For
any specific boundary diphone, there are again nine possible values of ActFromBound-
aryDiphone and ActDivFromBoundaryDiphone, one for each inflectional lexome.
For a given target word, e.g., dogs, we consider the activation and activation diversity,
given [gz] as cue, for the corresponding inflectional outcome, here noun plural. The
values of ActFromRemainingCues and ActDivFromRemainingCues depend on
the words that happen to be in the moving window, and hence their values vary from
token to token. In this way, each target word was associated with five measures for its
inflectional lexome.

Although the prior, activation, and activation diversity measures have been found to
be useful across many studies, there is considerable uncertainty about how they might
predict the duration of English S.

With respect to PriorMorph, the general strong correlation of ndl priors with
word frequency would suggest, given the many studies reporting durational shortening
for increasing frequency (see, e.g., Zipf, 1929, Jurafsky et al., 2001a, Bell et al., 2003a,
Gahl, 2008b), that a greater PriorMorph correlates with shorter S duration. However,
recent findings emerging from production studies using electromagnetic articulography
suggest that a higher prior (or frequency of occurrence) might predict increased rather
than decreased S duration: Tomaschek et al. (2018b) observed that, other things being
equal, greater frequency enables speakers to execute articulatory gestures with more
finesse, in parallel to the general finding that motor skills improve with practice. It is
also possible that PriorMorph will not be predictive at all, as Tucker et al. (2018) did
not observe an effect of the prior for stem vowel duration.

For the activation measures (ActFromBoundaryDiphone and ActFromRemain-
ingCues), our expectation is that a greater activation will afford durational lengthening.
Arnold et al. (2017) observed, using an auditory word identification task, that a greater
activation corresponded to higher recognition scores. Since a higher signal to noise ratio
is expected to give rise to improved recognition rates, the prediction follows for English S
that when the activation is higher, there must be more signal compared to noise, and this
higher signal to noise ratio is, for a fricative such as S, likely to realized by lengthening.
This is indeed what Tucker et al. (2018) observed for vowel duration in regular verbs: As
activation increased, the duration of the stem vowel increased likewise.

Turning to the activation diversity measure, here Tucker et al. (2018) observed a
strong effect, with larger activation diversity predicting shorter duration. This result fits
well with the finding of Arnold et al. (2017) that in auditory word identification, words
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with a low activation diversity elicited fast negative responses, whereas words with higher
activation diversity had higher recognition scores that came with longer decision times.
In fact, the activation diversity measure can be understood as a measure of lexicality:
a low lexicality is an index of noise, whereas a high lexicality indicates that the speech
signal is making contact with possibly many different words. The other side of the same
coin is that discriminating the target lexome in a densely populated subspace of the
lexicon takes more time. For speech production, Tucker et al. (2018) argue that when
lexicality is high, the system is in a state of greater uncertainty as many lexomes are co-
activated with the targeted outcome. Importantly, if some part of the signal, e.g., English
S, contributes to greater uncertainty, it is disadvantageous for both listener and speaker
to extend its duration. All that extending its duration accomplishes is that uncertainty
is maintained for a longer period of time. It makes more sense to reduce the duration of
those parts of the signal that do not contribute to discriminating the targeted outcome
from its competitors. These considerations led us to expect a negative correlation between
activation diversity and S duration.

5 Results

We analyzed the log-transformed duration of S with a generalized additive mixed model
(GAMM, Wood, 2006, 2011) with random intercepts for speaker and word. In addi-
tion to the five predictors derived from the ndl network, we controlled for the manner
of the preceding and following segment by means of two factors, one for the preced-
ing segment, one for the following segment (each with levels approximant, fricative,

nasal, plosive, vowel and absent). We included the average speaking rate of the
speaker (IndividualSpeakingRate) and the local speaking rate (LocalSpeakingRate)
as control covariates.

The model we report here is the result of exploratory data analysis in which the
initial model included all control predictors and the random effect factors, but no ndl
measures. We then added in ndl measures step by step, testing for non-linearities and
interactions. Model criticism of the resulting generalized additive mixed model (GAMM)
revealed that the residuals deviated from normality. This was corrected for by refitting
the model with a GAMM that assumes that the scaled residuals follow a t-distribution
(Wood et al., 2016). The scaled t-distribution adds two further parameters to the model,
a scaling parameter σ (estimated at 6.18) and a parameter for the degrees of freedom ν
of the t-distribution (estimated at 0.29). Thus, for the present data, the residual error is
characterized by ε/6.18 ∼ t(0.29). Table 4 and Figures 1–3 are based on this model.

As the present model is the result of exploratory data analysis, the p-values in Ta-
ble 4, which all provide strong support for model terms with ndl predictors, cannot be
interpreted as the long-run probability of false positives. One might apply a stringent
Bonferroni correction, and we note here that the large t-values for ndl model terms easily
survive a correction for 1,000 or even 10,000 tests. However, we prefer to interpret the
p-values simply as a measure of surprise and an informal point measure of the relative
degree of uncertainty about the parameter estimates.

Figure 1 presents the partial effect of PriorMorph. Larger priors go together with
longer durations. This effect levels off slightly for larger priors. Apparently, inflectional
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lexomes with a stronger baseline activation tend to be articulated with longer durations.
The 95% confidence interval (or more precisely, as GAMMs are empirical Bayes, the 95%
credible interval) is narrow, especially for predictor values between 5 and 25, where most
of the data points are concentrated.

Recall that PriorMorph has nine different values, one for each inflectional function
of S. It is noteworthy that when we replace PriorMorph by a factor with the nine
morphological functions as its levels, the model fit decreases (by 10 ML-score units)
while at the same time the number of parameters increases by 7. The ndl prior for the
inflectional functions, just by itself, already provides more precision for predicting the
duration of English S. Further precision is gained by also considering the activation and
activation diversity measures.
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Figure 1: Partial effect of PriorMorph in the GAMM fit to S duration, with 95%
confidence (credible) interval.
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Table 4: Summary of parametric and smooth terms in the generalized additive mixed
model fit to the log-transformed acoustic duration of S as pronounced in the Buckeye
corpus. The reference level for preceding and following manner of articulation is ”absent”.

A. parametric coefficients Estimate Std. Error t-value p-value
Intercept -2.9179 0.2294 -12.7173 < 0.0001
preceding = fricative -0.0962 0.0299 -3.2151 0.0013
preceding = nasal -0.1335 0.0233 -5.7229 < 0.0001
preceding = plosive -0.1869 0.0150 -12.4229 < 0.0001
preceding = vowel 0.0106 0.0144 0.7318 0.4643
following = approximant 0.2839 0.1470 1.9315 0.0534
following = fricative 0.1036 0.1470 0.7048 0.4809
following = nasal 0.1089 0.1474 0.7390 0.4599
following = plosive 0.0850 0.1469 0.5785 0.5629
following = vowel 0.1310 0.1469 0.8919 0.3725
LocalSpeakingRate -0.0463 0.0211 -2.1874 0.0287
IndividualSpeakingRate 2.3873 0.6633 3.5990 0.0003
B. smooth terms edf Ref.df F-value p-value
te(ActFromBoundaryDiphone,
ActDivFromBoundaryDiphone) 14.4458 16.9557 548.4375 < 0.0001
te(ActFromRemainingCues,
ActDivFromRemainingCues,
LocalSpeakingRate) 24.7081 32.1035 170.9787 < 0.0001
s(PriorMorph) 2.0235 2.3027 84.2267 < 0.0001
Random intercepts speaker 37.1278 38.0000 2118.9174 < 0.0001
Random intercepts word 458.5028 2280.0000 2190.5616 < 0.0001
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Figure 2: Partial effect in the GAMM fit to log-transformed S duration of the activation
and activation diversity of the boundary diphone. In the right plot, deeper shades of blue
indicate shorter acoustic durations, warmer shades of yellow denote longer durations.
The left plot presents contour lines with 1SE confidence bands.

Figure 2 presents the partial effect of the interaction of ActFromBoundaryDi-
phone and ActDivFromBoundaryDiphone, which we modeled with a tensor prod-
uct smooth. The left panel presents the contour lines with 1SE confidence intervals; the
right panel shows the corresponding contour plot in color to facilitate interpretation, with
darker shades of blue indicating shorter S duration, and warmer yellow colors denoting
longer durations. The narrow confidence bands in the left panel indicate that there are
real gradients in this regression surface, except for the upper left corner of the plotting
region. For all activation values, we find that as the activation diversity increases, S
duration decreases. Conversely, for most values of activation diversity, increasing the
activation leads to larger S duration. Shortest S durations are found for larger (but not
the largest) values of activation, and for activation diversities exceeding 0.2. The two
boundary measures interact insofar as S duration is strongly reduced for high DivLast-
Diphone in spite of high ActLastDiphone, as can be seen by the lake-like blue dip
in the upper right quadrant of the plot. While smaller activation – and consequently re-
duced support – for the morphological function of S should result in shorter S durations,
it seems as though greater certainty about the morphological function counterbalances
the trend, resulting in longer S durations (bottom left quadrant of the plot).
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Figure 3: Tensor product smooth for the three-way interaction of ActFromRemain-
ingCues by ActDivFromRemainingCues by local speaking rate. The regression
surface for the two activation measures is shown for deciles 0.1, 0.3, 0.5, 0.7, and 0.9 of
local speaking rate. Deeper shades of blue indicate shorter acoustic durations, warmer
shades of yellow denote longer durations.

Figure 3 visualizes the three-way interaction of ActFromRemainingCues by Act-
DivFromRemainingCues by local speaking rate 7 The successive panels of Figure 3
present the odd deciles of local speaking rate (0.1, 0.3, 0.5, 0.7 and 0.9). The regression
surface slowly morphs from one with long durations for high ActDivFromRemain-
ingCues (left panel) to a surface with long durations only in the lower left corner. The
general pattern for ActDivFromRemainingCues is that S duration decreases as Act-
DivFromRemainingCues increases. For the lowest two deciles of local speech rate, this
effect is absent for high values of ActFromRemainingCues. For ActFromRemain-
ingCues, we find that for lower values of ActDivFromRemainingCues durations
increase with activation. For higher activation diversities, this effect is U-shaped. The
interaction pattern between the two predictors mirrors the one found in Figure 2.

6 Discussion

Plag et al. (2015b) reported that there are significant differences in the duration of English
S as a function of the inflectional function realized by this exponent (see also Zimmer-
mann, 2016b, Seyfarth et al., 2018). Plag et al. observed that these differences in acoustic
duration challenge the dominant current theories of morphology. These theories, which
have their roots in post-Bloomfieldian American structuralism, hold that the relation
between form and meaning in complex words is best understood in terms of a calculus
in which rules operate on bound and free morphemes as well as on phonological units
such as syllables and feet. However, neither the units of this theory, nor configurations
of these units, nor the rules operating on these units or ensembles thereof, can explain
the observed differences in the duration of English S in an insightful way.

The present study explored whether the different durations of S can be understood
as following from the extent to which words’ phonological and collocational properties
can discriminate between the inflectional functions expressed by the S. We quantified
the discriminability of these inflectional functions with three measures derived from a
wide learning discrimination network that was trained on the Buckeye corpus. The input
features (cues) for this network were words’ lexomes in a five word window centered on
the S-bearing word and the diphones in the phonological forms of these lexomes. The

7Software for plotting confidence bands for these complex interactions is not available.
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classes to be predicted from these cues (the outcomes) were the inflectional functions
(inflectional lexomes) of the S.

Three measures derived from the network were predictive for the duration of S. A
greater activation of a word’s inflectional lexome (i.e., greater bottom-up support) pre-
dicted longer durations. A higher lexomic prior (i.e., a higher baseline activation or
equivalently, a higher degree of entrenchment in the network) also predicted longer du-
rations. Apparently, both the support for a word’s inflectional function that is provided
by that word’s form and its collocational patterning, as well as the a priori baseline sup-
port for the word that accumulates over the course of learning, give rise to a prolonged
acoustic signal. In other words, stronger support, both long-term and short-term, for an
inflectional function leads to an enhanced signal. This finding dovetails well with length-
ening of interfixes in Dutch and stronger fronting of vowels in Russian in proportion to
paradigmatic support (Kuperman et al., 2006, Cohen, 2014b). Signal enhancement as
a function of activation also replicates the findings of Tucker et al. (2018) for the stem
vowel of regular verbs in the Buckeye corpus.

The study by Tucker et al. (2018) reported an opposing force on the duration of verbs’
stem vowels: the activation diversity (the L1-norm of the activations of lexical outcomes).
Activation diversity is a measure of lexicality. It assumes high values when the cues in
the input are linked to many different outcomes. When an outcome is located in a dense
lexico-semantic subspace, it is more difficult to discriminate the targeted outcome from
its competitors. For auditory comprehension, we thus find that processing is slowed when
activation diversity is high (Arnold et al., 2017). The flip side of the same coin is that
in speech production, prolonging part of the acoustic signal, such as S, is dysfunctional
when this signal increases the discrimination problem. A signal that is confusing cannot
be unconfused by prolonging it. Prolongation will result only in lengthening a state
of uncertainty, instead of contributing to resolving it. Importantly, a large activation
diversity is dysfunctional not only for the listener, but also for the speaker. The auditory
image that the speaker projects and aims to realize through articulation (Hickok, 2014)
feeds back through the control loop to the semantic system. As a consequence, aspects
of the speech signal that are problematic for the listener will also be problematic for the
speaker.

Considered together, the three ndl measures indicate that the speaker has to balance
two opposing forces. One force seeks to lengthen parts of the signal in the presence of
strong bottom-up support and long-term expectations. The other force seeks to shorten
parts of the signal that increase uncertainty. The ndl measures enable us to probe these
forces. More importantly, our model illustrates that these two forces interact. When
the bottom-up support for a morphological function is low, S durations turn out to be
long when the uncertainty of the morphological function is reduced as well. However, a
‘mechanical’ model for the feedback loop from the auditory image to the semantic system
is not yet within reach: We have to rely on generalized additive models to chart the
details of the interplay of the opposing forces of certainty and uncertainty. What is clear,
however, is that the hierarchies of post-Bloomfieldian morphology, which informed speech
production models such as proposed by Dell (1986a) and Levelt et al. (1999a), are not
capable of providing an explanation for the variation in the duration of S exponents in
English. An error-driven wide learning network linking form and meaning is sufficient.

The framework of naive discriminative learning accepts that the language system is
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to some degree ‘chaotic’. Just as in weather systems, a butterfly flapping its wings in the
Amazon can start a chain of events that cause a rainstorm in London (Lorenz, 1972), the
cues that co-occur across learning events with cues that co-occur with cues of a target
word can co-determine the discriminability of that target word; see Mulder et al. (2014)
for an interpretation of the secondary family size effect along these lines.

Does this ‘chaotic’ explanation of non-random variation in S duration improve on an
explanation that simply posits that different inflectional functions have different conse-
quences for S duration? Rephrased statistically, does prediction accuracy increase when
we replace a model with a factor for inflectional function (with 9 levels) with a model
in which this factor is replaced with ndl measures? When we replace the factor in-
flection type by just the ndl prior, a numeric variable with 9 distinct values, model fit
indeed improves, while at the same time model complexity decreases. Instead of needing
8 parameters for inflectional function, only a single parameter (the slope of the regres-
sion line) suffices. When the linearity assumption for the prior is relaxed, the required
effective degrees of freedom is still well below 8.

What are the consequences of our findings for morphological theory and theories of
speech production? First consider morphological theory. Here, we are confronted with a
range of different approaches that rest on very different assumptions about the structure
of words. Two major approaches are relevant in the context of the S problem. On
the one hand, we have post-Bloomfieldian item-and-arrangement theories (IAA, Hockett,
1954) and generative offshoots thereof building on Chomsky and Halle (1968a). On the
other hand, we have realizational theories such as word and paradigm morphology (WP)
(Blevins, 2006). Both WP and IAA address how inflectional functions such as number and
tense are expressed in speech. IAA posits that this expression is mediated by morphemes,
i.e., the minimal units of a language that combine form and meaning. WP, on the other
hand, rejects the usefulness of the morpheme as theoretical construct (see also Beard,
1977, Aronoff, 1994, Blevins, 2003, Matthews, 1974). Instead of constructing a calculus
for building words out of morphemes, WP focuses on the paradigmatic relations between
words, and holds that morphological systematicities are driven by certain paradigm-
internal mechanisms, for example proportional analogy. Naive discriminative learning
provides an implementation for the proportional analogy of WP. For English S, this
proportional analogy not only concerns, as we have seen, phonological analogy, but also
includes collocational analogy.

It is less clear whether the present findings are compatible with IAA. Explanations
within IAA can attribute an effect to representations for units, to configurations of such
units as well as to the combinatorial rules that give rise to these configurations. Plag
et al. (2015a) showed that the observed differences in the durations of English S cannot
be explained in this way. However, IAA can assign conditional probabilities to units
and configurations of units, and link the likelihood of an effect to such probabilities (see,
among others Jurafsky et al., 2000, Aylett and Turk, 2004b, Gahl, 2008a, Bell et al., 2009a,
Tremblay and Tucker, 2011, Cohen Priva, 2015a, Kleinschmidt and Jaeger, 2015). We
cannot rule out that probabilities for inflectional functions that are properly conditioned
on collocational and phonological distributional patterns will also predict the duration
of English S. In the light of previous studies (Milin et al., 2017b, Tucker et al., 2018),
however, we anticipate that such measures will underperform compared to discriminative
measures. We note here that if measures such as, for instance, the probability of a
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genitive plural conditioned on the two preceding and following words, are indeed found
to be effective predictors, this would imply that the fine-tuning of the duration of S takes
place after morphemes have been assembled into phrases. In other words, any fine-tuning
of this kind must, within the generative framework, take place post-lexically.

Having outlined the implications of our findings for theoretical morphology, we next
consider their implications for models of speech production. The literature on speech
production is dominated by two models, those of Dell (1986a) and Levelt et al. (1999a).
Both models take the framework of IAA as given, and propose mechanisms for assembling
from morphemes and phonemes the form representations posited to drive articulation.

Dell’s interactive activation model is set up in such a way that the activation of
morphemes can be influenced by other words in the phrase. The paradigmatic effect of
activation diversity, which we calculated for all inflectional functions that can be realized
as S, however, cannot be captured by this model, as in most phrases only one, perhaps
two of these inflectional functions are relevant. It is also unclear how effects of the ndl
prior might be accounted for, as the model does not implement baseline activation levels.
Furthermore, the activation measure in our learning model integrates evidence from all
words in the 5-word window to the S, whereas in Dell’s model inflectional morphemes
receive activation only from an inflectional concept node.

The weaver model by Levelt et al. implements a strictly modular architecture,
with a lemma layer separating morphemes from concepts. In this model, selection of
the stem is handled by hard-wired links between lemmas’ word forms one layer down
in the model’s hierarchy. The selection of a specific inflectional morpheme is driven by
diacritical features associated with a word’s lemma. Whether an inflectional suffix is
selected depends on whether its corresponding diacritical feature is flagged as active.
Since weaver explains frequency effects at the word form level, it might be possible
to interpret the inflectional priors from the ndl network as the resting activation levels
of the inflectional morphemes in weaver’s form stratum. However, since the weaver
model is not a learning model, each of the nine values of the ndl prior unavoidably
become free parameters of the model. Furthermore, the way the priors are estimated in
ndl, namely, by evaluating entrenchment across all diphones, is completely at odds with
weaver’s modular design. Since weaver’s design precludes the possibility of neighbor-
hood similarity effects — a prediction that has been shown to be incorrect (Vitevitch,
2002, Vitevitch and Stamer, 2006, Vitevitch, 2008) — it is unlikely that this model can be
adapted to integrate discriminative information across the full lexicon. Furthermore, the
cumulation of evidence from a word’s context that naive discriminative learning captures
by means of the activation and activation diversity measures is at odds with weaver’s
assumption that lexical assembly is driven only by a concept node in combination with
inflectional diacritics.

The positive correlations of prior and activation with S duration run counter to the
predictions of information theoretic accounts, according to which words and segments
are realized shorter the less informative they are (Aylett and Turk, 2004a, Jaeger, 2010,
Cohen Priva, 2015b). However, our results dovetail well with the Paradigmatic Signal
Enhancement Hypothesis (Kuperman et al., 2006), which holds that the more probable
an exponent is in a given paradigm, the longer it will be articulated (see also Ernestus
and Baayen (2006) and Cohen (2014b)). Kuperman et al. observed that the duration
of an interfix in Dutch compounds was proportional to its probability within the left
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constituent family of the compound. For English S, it is the set of inflectional lexomes
that S realises that constitute the paradigm within which both support and uncertainty
are evaluated.

We conclude with placing the present findings in a broader perspective. Speakers
tend to smooth articulatory gestures across junctures, resulting in a variety of forms of
assimilation. Simplification of articulatory gestures can give rise to substantial reduction
of spoken words compared to dictionary norms (Ernestus, 2000, Johnson, 2004b, Ernestus
et al., 2002, Arnold et al., 2017). How exactly words are realized in speech depends on
the interplay of many factors, including audience design (Lindblom, 1990), minimization
of effort (Zipf, 1949), information density management (Aylett and Turk, 2004a, Jaeger,
2010, Bell et al., 2009b), articulatory proficiency (Tomaschek et al., 2018b,a), speech
rhythm (Ernestus and Smith, 2018), and paradigmatic enhancement (Kuperman et al.,
2006, Cohen, 2014b). To this list, the present study adds “discrimination management”
for inflectional functions (see also Tucker et al., 2018). When an exponent such as S
provides strong support for the targeted inflectional lexome (gauged by ndl activations
and priors), it is articulated with longer duration. When S fails as discriminative cue, and
instead creates uncertainty about the intended inflectional function by providing support
for many different such functions, its duration is decreased. Energy is not invested in
a signal that creates confusion instead of clarity. It is well known that segments can
have different functional load, and Wedel et al. (2013) have shown that a high functional
load inhibits the loss of phonological contrasts. Wedel et al.’s study is based on minimal
pairs. The measures derived from naive discriminative learning offer the researcher new
tools that probe language structure at a much more fine-grained level than is possible
with minimal pairs. Thanks to these tools, we can now begin to further improve our
understanding of how functional load modulates segment duration.
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A NDL: Rescorla-Wagner equations

Technically, the Rescorla-Wagner equations are closely related to the perceptron (Rosen-
blatt, 1962) and adaptive learning in electrical engineering (Widrow and Hoff, 1960). The
Rescorla-Wagner equations estimate the association strength, henceforth weights W , be-
tween input units C, with C ∈ ck, k = 1, 2, ..., K, henceforth cues, and a set of output
units O, with O ∈ on, n = 1, 2, ..., N , henceforth outcomes.

During learning, each outcome Oj is defined by a set of cues, henceforth cue set CSΩ.
Usually, q equals j. Since j also represents the position of O in the weight matrix, we
use q as a pointer to the associated Oj.

The size of the weight matrix increases incrementally during learning whenever new
subsets of cues and outcomes are encountered. After training, the Rescorla-Wagner net-
work will be defined by a K ×N weight matrix, where K represents the total number of
unique cues encountered during learning and N represents the total number of encoun-
tered unique outcomes during learning.

At a given learning event Lt, t = 1, 2, ..., T , weights are adapted on the connections
from the inputs present during the learning event t, henceforth the cues Ct(Ct ⊆ C), to
all of the outcomes O1,...,t that have been encountered at least once during any of the
learning events 1, 2, ..., t− 1. The outcomes present at learning event Lt are denoted by
Ot(Ot ⊆ O). The weight between cue ci and outcome oj at the end of the learning event
t is given by

w
(t)
ij = w

(t−1)
ij + ∆w

(t−1)
ij , (1)
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∆wt−1
ij is calculated by the Rescorla-Wagner equations:

∆w
(t−1)
ij =


a) 0 if ci /∈ Ct,
b) αiβj

(
λ−

∑
m I[cm∈Ct]w

(t−1)
mj

)
if ci ∈ Ct ∧ oj ∈ Oj,

c) αiβj

(
0−

∑
m I[cm∈Ct]w

(t−1)
mj

)
if ci ∈ Ct ∧ oj /∈ Oj ∧ oj ∈ O1,...,t−1,

d) 0 otherwise.
(2)

The Rescorla-Wagner equations define four conditions which define adaptation strength
∆w

(t−1)
ij on the efferent weights in learning event t. The maximum learnability, λ, was

set to 1.0 in all our calculations, while cue and outcome salience, αi and βj, were set to
0.1. The four conditions in equation 2 define the following states:

1. if the i-th cue is not an element of the active cues Ct during the event Lt, ∆w
(t−1)
ij

equals to zero and none of its efferent weights are adapted.

2. If the i-th cue is an element of the active cues in a learning event Ct, the connection
to oj is strengthened if oj is also present in the event t by subtracting the sum of the
weights across all cues in Ct from λ. As a result, ∆wt−1

ij is inversely proportional
to the number of present cues. I is the indicator operator, which evaluates to 1 if
its argument in square brackets is true, and to zero otherwise. m indexes the cues
in Ct.

3. If oj is not present, but has been encountered during some previous learning event,
the strength of the connection between ci weight and oj is reduced by subtracting the
sum of the weights across all cues in Ct from 0. As a result, ∆wt−1

ij is proportional
to the number of present cues.

4. If none of the three above conditions is true, ∆w
(t−1)
ij equals to zero. This is espe-

cially the case when an outcome is encountered which was not present in any of the
previous learning events.
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