Gemination and Degemination in English Affixation:
a phonetic investigation of dis- and –ly

Sonia Ben Hedia

LabPhon 15, 13–17 July 2016
Satellite Event: Reduction
(De-)Gemination in English

• Sequence of two identical consonants across a morphological boundary

 - un- un-natural
 - in- in-numerous, im-material, il-logical, ir-resistable
 - dis- dis-satisfied
 - -ly sole-ly, technical-ly

• Phonetic correlates
 o Gemination: Longer duration than a singleton
 o Degemination: Same duration as a singleton

• Theoretical assumption: Degemination is affix- or stratum-dependent
Predictions: Lexical Phonology

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological Process</td>
<td>in + numerous</td>
<td>dis+ satisfied</td>
</tr>
<tr>
<td></td>
<td>Phonological Process</td>
<td>i/n/umerous</td>
</tr>
<tr>
<td></td>
<td>Phonetic Outcome</td>
<td>i[n]umerous</td>
</tr>
</tbody>
</table>

Degemination
Predictions: Lexical Phonology

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological Process</td>
<td>in + numerous dis+ satisfied</td>
<td>un + natural sole + ly</td>
</tr>
<tr>
<td>Phonological Process</td>
<td>i/n/umerous di/s/atified</td>
<td>u/nn/atural so/ll/y</td>
</tr>
<tr>
<td>Phonetic Outcome</td>
<td>i[n]umerous di[s]atisfied</td>
<td>u[n:]atural so[l:]y</td>
</tr>
</tbody>
</table>

Degemination

Gemination
Predictions: Morphological Separability

• Phonetic realization is dependent on morphological separability (e.g. Hay 2003, Smith et al. 2012)
• more separable → less reduction

More separable complex words geminate.
Less separable complex words degeminate.

• Separability:
 – Semantic Transparency: opaque vs. transparent
 – Type of Base: bound root vs. word
 – Relative Frequency: relative frequency of base and derivative
Empirical evidence?

• Three studies empirically investigated *in*- and *un*- in English
 – *un*- and *in*- geminate (Oh and Redford 2013, Kaye 2005, Ben Hedia & Plag 2015)

• No empirical study of *dis*- and *–ly*
This study

• Sample of *dis-* and *-ly-* affixed words with a double or a single consonant at the morphological boundary

• Data: Natural conversational speech from the Switchboard Corpus (Godfrey & Holliman 1997)

• Manual segmentation and acoustic measurements in Praat (Boersma & Weenink 2014)
Statistical Analysis

- Multiple regression with \textit{duration} as dependent variable and \textit{environment} as predictor

\textit{dis-}

<table>
<thead>
<tr>
<th>Single</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>s#C (disfavor)</td>
<td>s#V (disambiguate)</td>
</tr>
</tbody>
</table>

\textit{-ly}

<table>
<thead>
<tr>
<th>Single</th>
<th>Double</th>
</tr>
</thead>
<tbody>
<tr>
<td>single (randomly)</td>
<td>double (really)</td>
</tr>
<tr>
<td>syllabic-double (mentally)</td>
<td>syllabic-double (mentally)</td>
</tr>
</tbody>
</table>
Statistical Analysis

• Multiple regression with duration as dependent variable and environment as predictor

• Coding of pertinent covariates:
 - Preceding Segment Duration
 - Preceding Segment
 - Following segment
 - Speech Rate
 - Stress
 - Word Form Frequency
 - Relative Frequency
 - Semantic Transparency
Statistical Analysis

• Multiple regression with **duration** as dependent variable and **environment** as predictor

• Coding of pertinent covariates:
 • Preceding Segment Duration
 • Preceding Segment
 • Following segment
 • Speech Rate
 • Stress
 • Word Form Frequency
 • Relative Frequency
 • Semantic Transparency
Results 1: dis-
Results 1: *dis-*
Summary: dis

• *dis*- can geminate:
 • Interaction between Semantic Transparency and environment:
 • For transparent items *dis*- clearly geminates
 • For opaque items the /s/ in s#s is longer than in s#V but not longer than in s#C-structures
Results 4: \(-/y\) does not geminate
Results 4: -/y does not geminate
Results 4: -/y does not geminate
Results 4: -/y does not geminate
Implications

- Lexical Phonology makes wrong empirical predictions
- Gemination is not stratum-dependent, but affix-specific
- Morphological information is directly reflected in the speech signal
 - *dis-*
 - Morphological separability is reflected in duration (cf. Hay 2007, Collie 2008, Ben Hedia & Plag 2016 on *in-*)
- Challenges models of lexical phonology and models of speech production that state that post-lexical phonology has no access to morphological information (e.g. Lexical Phonology, Levelt, Roelofs & Meyer 1999)
Thank you very much for your attention!

Funding
Deutsche Forschungsgemeinschaft:
Forschergruppe 2372
• Grant PL151/8-1 ‘Morpho-phonetic Variation in English’
References

un-model

lm(formula = bc ~ TransitionType + LocSpeech, data = unComplex2)

Residuals:
 Min 1Q Median 3Q Max
-0.084297 -0.025824 0.000047 0.025345 0.114253

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.531198 0.015457 34.366 < 2e-16 ***
TransitionTypen#V -0.047212 0.006890 -6.852 1.70e-10 ***
TransitionTypen#nV 0.049706 0.009800 5.072 1.13e-06 ***
LocSpeech -0.007540 0.001106 -6.814 2.08e-10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 ’ 1

Residual standard error: 0.03959 on 152 degrees of freedom
Multiple R-squared: 0.5706, Adjusted R-squared: 0.5621
F-statistic: 67.33 on 3 and 152 DF, p-value: < 2.2e-16
im-model

```
im(formula = bc ~ NoCons + LocSpeech + StressPattern + Affix, data = imComplex3)
```

Residuals:
```
Min   1Q Median   3Q  Max
-0.090887 -0.023970 -0.001624  0.024476  0.081057
```

Coefficients:
```
                        Estimate  Std. Error  t value  Pr(>|t|)
(Intercept)               0.3172056  0.0121191   26.174  < 2e-16 ***
NoConsm#mV                 0.0464675  0.0069756    6.661   4.75e-10 ***
LocSpeech                 -0.0034325  0.0007938   -4.324   2.77e-05 ***
StressPatternbeforeUnstressed -0.0355165  0.0076431   -4.647    7.29e-06 ***
AffixinNeg                 0.0204865  0.0074717     2.742    0.00685 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```

Residual standard error: 0.03493 on 151 degrees of freedom
Multiple R-squared: 0.5263, Adjusted R-squared: 0.5137
F-statistic: 41.94 on 4 and 151 DF, p-value: < 2.2e-16
dis-model

lm(formula = AbsDur ~ TransitionType * SemanticTransparency + LocSpeech, data = dis_2)

Residuals:
Min 1Q Median 3Q Max
-0.045423 -0.015859 0.000122 0.015080 0.055498

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|--------------------------|-----------|------------|---------|----------|
| (Intercept) | 0.1381778 | 0.0111967 | 12.341 | < 2e-16 *** |
| TransitionTypes#V | -0.0218816| 0.0074598 | -2.933 | 0.00403 ** |
| TransitionTypes#s | 0.0082414 | 0.0092700 | 0.889 | 0.37579 |
| SemanticTransparencytransparent | 0.0014439 | 0.0068300 | 0.211 | 0.83294 |
| LocSpeech | -0.0029549| 0.0007211 | -4.098 | 7.68e-05 *** |
| TransitionTypes#V:SemanticTransparencytransparent | 0.0218454 | 0.0096749 | 2.258 | 0.02579 * |
| TransitionTypes#s:SemanticTransparencytransparent | 0.0286366 | 0.0121318 | 2.360 | 0.01989 * |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02254 on 118 degrees of freedom
Multiple R-squared: 0.3454, Adjusted R-squared: 0.3121
F-statistic: 10.38 on 6 and 118 DF, p-value: 3.239e-09
-/y-model

lm(formula = AbsDurCon ~ TransitionType + PrecSegVC + logWordFormFreqAllCoca + `LocSpeech, data = lyComplex3)

Residuals:
 Min 1Q Median 3Q Max
-0.039228 -0.013135 -0.000586 0.012467 0.044022

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0812883 0.0078464 10.360 < 2e-16 ***
TransitionTypedouble -0.0039653 0.0047610 -0.833 0.406284
TransitionTypesyllabic-double 0.0034212 0.0035686 0.959 0.339312
PrecSegVCV 0.0156936 0.0044286 3.544 0.000531 ***
logWordFormFreqAllCoca -0.0016310 0.0007767 -2.100 0.037461 *
LocSpeech -0.0023351 0.0004379 -5.332 3.65e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01822 on 145 degrees of freedom
Multiple R-squared: 0.2615, Adjusted R-squared: 0.2361
F-statistic: 10.27 on 5 and 145 DF, p-value: 1.918e-08
Overview of the data

<table>
<thead>
<tr>
<th></th>
<th>Double Consonant</th>
<th>Single Consonant</th>
<th>Total per affix</th>
</tr>
</thead>
<tbody>
<tr>
<td>dis-</td>
<td>24</td>
<td>104</td>
<td>128</td>
</tr>
<tr>
<td>-ly</td>
<td>81</td>
<td>73</td>
<td>154</td>
</tr>
</tbody>
</table>
Overview of the data (types)

<table>
<thead>
<tr>
<th></th>
<th>Double Consonant</th>
<th>Single Consonant</th>
<th>Total per affix</th>
</tr>
</thead>
<tbody>
<tr>
<td>un-</td>
<td>6</td>
<td>95</td>
<td>101</td>
</tr>
<tr>
<td>in-</td>
<td>16</td>
<td>67</td>
<td>83</td>
</tr>
<tr>
<td>dis-</td>
<td>9</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>-ly</td>
<td>77</td>
<td>73</td>
<td>150</td>
</tr>
</tbody>
</table>