Gemination and Degemination in English Affixation
Lexical Strata, Variability, and Phonetic Evidence

Sonia Ben Hedia & Ingo Plag

17th International Morphology Meeting, 18–21 February 2016
Morpho-phonology as we know it

• Morpho-phonological alternations are categorical but may have lexical exceptions.

• The formal level of representation of morphemes is phonological in nature.

• Post-lexical phonology and phonetics have no access to lexical information.
Problems

• Morpho-phonological alternations are more variable than previously assumed, and governed by unexpected factors
 o Stress shift (Bauer, Lieber & Plag 2013 on -able)
 o Stress preservation (Collie 2008, relative frequency as a proxy for morphological segmentability)

• Subphonemic detail may reflect morphological information
 o Free vs. bound stems (Kemps et al. 2005, Blazej & Cohen-Goldberg 2015)
 o Different S morphemes (Plag, Homann & Kunter 2015)

• Serious implications for theories of morpho-phonology (Plag 2014)
 o Exception vs. rule
 o Lexical vs. post-lexical phonology (in linguistic theory, and in speech production models)
(De-)Gemination in English

• Sequence of two identical consonants across a morphological boundary

 un-
 un-natural

 in-
 in-numerous, im-material, il-logical, ir-resistable

 -ly
 sole-ly, technical-ly

• What happens at the segmental level? Gemination or deletion?

• Phonetic correlates
 o Gemination: Longer duration than a singleton
 o Degemination: Same duration as a singleton
Assumptions about gemination in English

• *un-* geminates

• *in-* degeminates

 (e.g. Cruttenden & Gimson 2014, Cohen-Goldberg 2014, Kiparsky 1982, Mohanan 1986)

• -*ly*

 o ... is variable (*stalely* vs. *fully*, Bauer 2001, Bauer, Lieber & Plag 2013)

 o ... geminates (Lexical Phonology: level 2 affix)

• General theoretical assumptions

 o Degemination is affix- or stratum-dependent

 o Degemination is a categorical morpho-phonological process with some lexical exceptions
Predictions

<table>
<thead>
<tr>
<th></th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological</td>
<td>in + numerous</td>
<td>un + natural sole + ly</td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phonological</td>
<td>i/n/umerous</td>
<td>u/nn/atural so/l/y</td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phonetic Outcome</td>
<td>i[n]umerous</td>
<td>u[n:]atural so[l:]y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Degemination

Gemination
Empirical evidence?

• Only two studies empirically investigated *in*- and *un*- in English

• Type-dependent (Oh and Redford 2013) and speaker-dependent (Kaye 2005) variation in degemination with *in*-prefixed words

 immigrational degemination
 immemorial gemination
 immature variable (by speaker)

• Problems: Only experimental data, only very small set of types

• No empirical study of *-ly*
This study

• What determines degemination at morphological boundaries? Three affixes: *un-*, *in-*, *-ly*

• Diagnostics: Acoustic duration

• Data: Natural conversational speech
Methodology

• Sample of un-, in- and -ly-affixed words with a double or a single consonant at the morphological boundary
• Switchboard Corpus (Godfrey & Holliman 1997)
• For the prefix in- the allomorph /im/ was investigated
• Manual segmentation and acoustic measurements in Praat (Boersma & Weenink 2014)
Methodology

• Statistical Analysis: Multiple regression with **duration** as dependent variable and **number of consonants** (single vs. double) as predictor

• Coding of pertinent covariates:
 • Preceding Segment Duration
 • Preceding Segment
 • Following segment
 • Speech Rate
 • Stress
 • Syllabic
 • Word Form Frequency
 • Relative Frequency
 • Affix
 • Semantic Transparency
Overview of the data

<table>
<thead>
<tr>
<th></th>
<th>Double Consonant</th>
<th>Single Consonant</th>
<th>Total per affix</th>
</tr>
</thead>
<tbody>
<tr>
<td>un-</td>
<td>23</td>
<td>135</td>
<td>158</td>
</tr>
<tr>
<td>in-</td>
<td>89</td>
<td>67</td>
<td>156</td>
</tr>
<tr>
<td>-ly</td>
<td>76</td>
<td>80</td>
<td>156</td>
</tr>
</tbody>
</table>
Results: Overview
Results 1: *un*-geminates
Results 1: *un-* geminates
Results 2: *in*-geminates

- **Segments across boundary**: The duration in seconds for single and double segments is compared.
- **Local speech rate**: The duration in seconds against the local speech rate is shown.
- **Stress pattern**: Comparison of in-σ and in-σ in duration.
- **Type of affix**: Comparison of inLoc and inNeg in duration.
Results 2: *in*-geminates

- **Segments across boundary:**
 - Single: Mean duration = 0.07 seconds
 - Double: Mean duration = 0.09 seconds

- **Local speech rate:**
 - Decrease in duration as speech rate increases

- **Stress pattern:**
 - *in-'σ*
 - Duration = 0.10 seconds
 - *in-σ*
 - Duration = 0.09 seconds

- **Type of affix:**
 - *inLoc*
 - Duration = 0.09 seconds
 - *inNeg*
 - Duration = 0.08 seconds
Results 2: *in-* geminates

- **Segments across boundary**: Duration in seconds for single vs. double segments.
- **Local speech rate**: Duration in seconds as a function of local speech rate.
- **Stress pattern**: Duration in seconds for *in-*σ vs. *in*-σ.
- **Type of affix**: Duration in seconds for *inLoc* vs. *inNeg*.

![Graphs showing duration in seconds for different conditions and variables.](Image)
Results 2: *in*-geminates

- **Segments across boundary:**
 - Single: Duration in seconds range from 0.06 to 0.10.
 - Double: Duration in seconds range from 0.08 to 0.12.

- **Local speech rate:**
 - Duration in seconds decreases as speech rate increases.

- **Stress pattern:**
 - *in*-σ: Duration in seconds range from 0.07 to 0.09.
 - *in*-σ: Duration in seconds range from 0.08 to 0.10.

- **Type of affix:**
 - inLoc: Duration in seconds range from 0.08 to 0.10.
 - inNeg: Duration in seconds range from 0.07 to 0.09.
Results 3: -/y does not geminate
Results 3: -/y does not geminate

Additional covariate: Syllabic (ment[l]y vs. ment[əl]y, odd[l]y)
Results 3: -/y does not geminate
Results 3: -/y does not geminate
Summary

• *un-* geminates: no surprise

• *in-* geminates: unexpected result
 o Effect of AFFIX: homophonous locative and negative *in-* prefixes are acoustically different

• *-ly* degeminates: unexpected result
 o effect of RELATIVE FREQUENCY: morphological segmentability influences phonetic implementation
Implications

• Empirical facts contradict received wisdom for *in*- and *-ly*

• Lexical Phonology makes wrong empirical predictions

• Morphological information is directly reflected in the speech signal
 o *in* -: Homophonous affixes exhibit different acoustic properties (cf. Plag, Homann & Kunter 2015 on S)

• Challenges models of lexical phonology and models of speech production that state that post-lexical phonology has no access to morphological information (e.g. Lexical Phonology, Levelt, Roelofs & Meyer 1999)
Thank you very much for your attention!

We gratefully acknowledge financial support by
Deutsche Forschungsgemeinschaft (Grant PL151/8-1 ‘Morphophonetic Variation in English‘)
References

un-model

Call:
lm(formula = bc ~ TransitionType + LocSpeech, data = unComplex2)
#
Residuals:
Min 1Q Median 3Q Max
-0.081237 -0.027028 -0.000937 0.025328 0.096961
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.581989 0.014676 39.655 < 2e-16 ***
TransitionTypesingle-C -0.049389 0.009505 -5.196 6.59e-07 ***
TransitionTypesingle-V -0.099885 0.009641 -10.360 < 2e-16 ***
LocSpeech -0.007646 0.001063 -7.196 2.83e-11 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1
#
Residual standard error: 0.03788 on 149 degrees of freedom
Multiple R-squared: 0.6011, Adjusted R-squared: 0.5931
F-statistic: 74.84 on 3 and 149 DF, p-value: < 2.2e-16
lm(formula = bc ~ NoCons + LocSpeech + StressPattern + Affix,
data = imComplex4)
#
Residuals:
Min 1Q Median 3Q Max
-0.081827 -0.023172 -0.002205 0.023101 0.083318
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2856713 0.0112978 25.286 < 2e-16 ***
NoConsdouble 0.0442330 0.0064822 6.824 2.08e-10 ***
LocSpeech -0.0032078 0.0007413 -4.327 2.76e-05 ***
StressPatternstr-unstr -0.0344743 0.0071455 -4.825 3.44e-06 ***
AffixinNeg 0.0196406 0.0069752 2.816 0.00553 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
Residual standard error: 0.0325 on 149 degrees of freedom
Multiple R-squared: 0.5392, Adjusted R-squared: 0.5268
F-statistic: 43.58 on 4 and 149 DF, p-value: < 2.2e-16
-ly-model

lm(formula = AbsDurCon ~ NoCons + logRelFreq + PrecSegVC + LocSpeech +
Syllabic, data = lyComplex2)
#
Residuals:
Min 1Q Median 3Q Max
-0.046194 -0.013208 -0.001831 0.011909 0.045429
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0799558 0.0086899 9.201 3.41e-16 ***
NoConsdouble -0.0074318 0.0056623 -1.313 0.191410
logRelFreq -0.0014775 0.0006016 -2.456 0.015219 *
PrecSegVCV 0.0168499 0.0047635 3.537 0.000542 ***
LocSpeech -0.0022602 0.0004393 -5.145 8.49e-07 ***
Syllabicnon-syllabic -0.0138244 0.0068922 -2.006 0.046726 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
Residual standard error: 0.01876 on 146 degrees of freedom
Multiple R-squared: 0.2435, Adjusted R-squared: 0.2176
F-statistic: 9.398 on 5 and 146 DF, p-value: 8.768e-08
Types

<table>
<thead>
<tr>
<th></th>
<th>Doubles</th>
<th>Singles</th>
</tr>
</thead>
<tbody>
<tr>
<td>un-</td>
<td>6</td>
<td>93</td>
</tr>
<tr>
<td>in-</td>
<td>17</td>
<td>65</td>
</tr>
<tr>
<td>-ly</td>
<td>76</td>
<td>72</td>
</tr>
</tbody>
</table>