

FOR 2373Spoken MorphologyDFGDeutsche
Forschungsgemeinschaft

Priming Maltese Plural Patterns: Effects of frequency and structure

Jessica Nieder, Holger Mitterer & Ruben van de Vijver nieder@phil.hhu.de, holger.mitterer@um.edu.mt,

Ruben.Vijver@hhu.de

Heinrich-Heine-Universität Düsseldorf, University of Malta

Maltese Plurals

Maltese distinguishes two types of plurals, sound and broken, and we find a great amount of variation within both:

- (1a) sound plural = *fjura fjuri* 'flower(s)'
- (1b) sound plural = *nannu nanniet* 'grandfather(s)'
- (2a) broken plural = ktieb kotba 'book(s)'
- (2b) broken plural = *denfil dniefel* 'dolphin(s)'

9 sound plural suffixes, 11 broken plural patterns

Theoretical Framework

Results: Statistical Model

	Estimate	Std. Err	t-value	p-value
Intercept	6.489808	0.024523	264.645	<2e-16 ***
PrimeFrequency PluralType	-0.031785 0.027899	0.004920 0.022605	-6.460 1.234	2.97e-10 *** 0.218
PRIMEFREQUENCY:PLURALTYPE	0.001253	0.009460	0.132	0.895

Table 2: Lmer model results

Summary

- frequency of plural primes does not elicit different reaction times for sound and broken singulars (p = 0.9)
- similar processing = **Single-Mechanism**

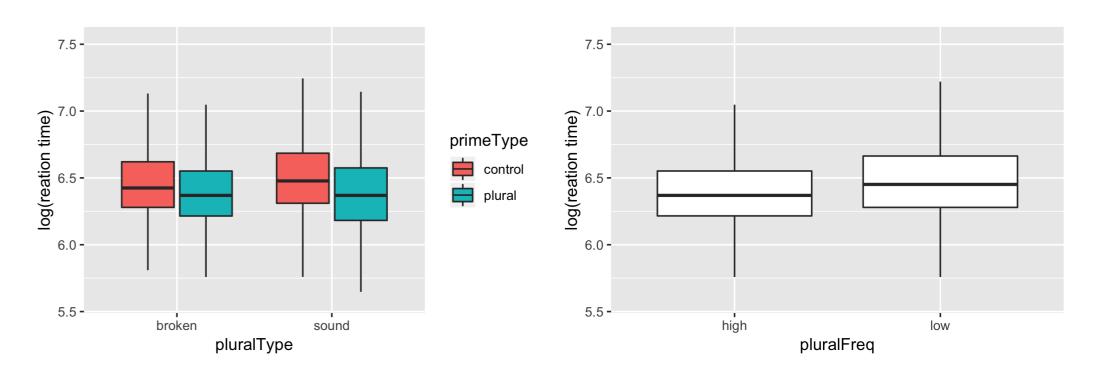
Single-Mechanism Approach: all morphology is based on analogies, differences in processing morphological patterns reflect differences in their frequency (e.g. [4], [6], [6])

Dual-Mechanism Approach: regular morphology is derived by rule, irregular morphology is based on analogy (e.g. [1], [2], [3])

Predictions

Single-Mechanism Approach:

similar processing: frequency effect for both plural types, similar priming for both plurals


Dual-Mechanism Approach:

differences in processing: frequency effect only for broken plurals, different priming effect for both plurals

Materials & Method

• cross-modal priming experiment (auditory primes,

Results: Structure of Single-Mechanism

Figure 1: Effect of prime and plural type on rt (left); Effect of frequency of patterns on rt (right)

- the reaction times for sound and broken plurals did not differ significantly (*p* =.16), but greater difference in priming effect for sound than for broken (*p*<.001)
- frequent patterns elicit shorter reaction times (p<.01) (see also [7],[8])

Discussion

- no significant plural frequency effect for sound and broken (Table 2)
- phonological overlap of target and prime may trigger priming effect for sound plurals (Figure 1)
 results support Single-Mechanism Approach that takes frequency of patterns and other factors like phonological similarity into account

visual targets)

- lexcial decision task
- 59 adult native speakers of Maltese

	Prim			
Target	Related PI	Control PI	Frequency	Plural Type
kappella patri alla qattiel farfett tifel storja banda vilnu	kappelli patrijiet allat qattiela friefet tfal stejjer bnadi vilel	politiki universitajiet triqat halliema xwabel swieq ktajjen ċrieki	high high low low high high low low (filler item)	sound sound sound broken broken broken broken (filler item)

 Table 1: Example set of items

References

- 1 Pinker, S. and Prince, A. (1988). On language and connectionism: Analysis of parallel distributed processing model of language acquisition. Cognition, (28):73-193.
- 2 Pinker, S. (1998). Words and rules. Lingua, 106:219-242.
- 3 Pinker, S. and Úllmann, M. T. (2002). The past and future of the past tense. Trends in Cognitive Science, 6(11):456-463.
- 4 Rumelhart, D. E. and McClelland, J. (1986). On learning the past tenses of english verbs. In Rumelhart, D. E. and McClelland, J., editors, Parallel distributed processing. MIT Press.
- 5 Skousen, R. (1992). Analogy and Structure. Springer Netherlands.
- 6 Blevins, J. and Blévins, J. (2009). Analogy in Grammar: Form and Acquisition. Oxford University Press.
- 7 Ernestus, M. and Baayen, H. R. (2006). Analogical effects in regular past tense production in dutch. Linguistics, 42(5):873-903.
- 8 Clahsen, H. and Neubauer, K. (2010). Morphology, frequency, and the processing of derived words in native and non-native speakers. Lingua, 120:2627-2637.